Original: Inglés

Noviembre de 2023

Informe del Grupo *ad hoc*de la OMSA sobre la susceptibilidad de las especies de crustáceos a la infección por las enfermedades de la lista de la OMSA

Índice

1.	Introducción	2
2.	Metodología	2
3.	Puntuación y resultado de las evaluaciones	5
4.	Resultados	22
5.	Convención de denominación para las especies susceptibles	25
6.	Comentarios sobre los fundamentos y las decisiones tomadas por el grupo ad hoc	26
	7. Artículo 1.5.9. Inclusión de especies susceptibles con un rango taxonómico de género o superior	26
8.	Referencias	26
Lis	ta de anexos	
An	exo 1. Lista de participantes de la evaluación de 2023	36
And	exo 2. Mandato de la evaluación de 2023	37
And	exo 3. Lista de participantes de la evaluación de 2016	38

1. Introducción

Este informe abarca la labor del Grupo *ad hoc* de la OMSA sobre la susceptibilidad de las especies de crustáceos a la infección por las enfermedades de la lista de la OMSA (en adelante, el grupo *ad hoc*), reunido por vía electrónica del 7 al 9 de noviembre de 2023.

En junio de 2016, un Grupo *ad hoc* de la OMSA sobre la susceptibilidad de las especies de crustáceos a la infección por las enfermedades de la lista de la OMSA ya había completado evaluaciones para la infección por el virus del síndrome de las manchas blancas. Más tarde, este grupo *ad hoc* completó otra evaluación, ya que existen nuevas pruebas científicas sobre la susceptibilidad de los crustáceos a la infección por el virus del síndrome de las manchas blancas que deberán someterse a revisión. En este informe, se incluyen los resultados de ambas evaluaciones, tanto de 2016 como de 2023.

La lista de participantes y el mandato de la evaluación de 2023 figuran en el <u>Anexo I</u> y el <u>Anexo II</u>, respectivamente. La lista de participantes de la evaluación de 2016 figura en el Anexo 3.

2. Metodología

El grupo ad hoc aplicó los criterios del Capítulo 1.5. Criterios para la inclusión de especies susceptibles de infección por un agente patógeno específico del Código Acuático a las especies hospedadoras potenciales, con miras a determinar la susceptibilidad a la infección por el virus del síndrome de las manchas blancas.

Las evaluaciones de la susceptibilidad de una especie a la infección por el virus del síndrome de las manchas blancas se realizaron según un procedimiento en tres etapas, tal y como se indica en el Artículo 1.5.3. y se basaron en:

Etapa 1. Criterios para determinar si la vía de transmisión es coherente con las vías naturales de transmisión de la infección (tal y como se describe en el Artículo 1.5.4.);

Etapa 2. Criterios para determinar si el agente patógeno se ha identificado adecuadamente (tal y como se describe en el Artículo 1.5.5.);

Etapa 3. Criterios para determinar si las pruebas indican que la presencia del agente patógeno constituye una infección (tal y como se describe en el Artículo 1.5.6.):

- A. El agente patógeno se multiplica o se encuentra en el estadio de desarrollo en el hospedador;
- B. Un agente patógeno viable se ha aislado en las especies susceptibles propuestas, o se ha demostrado su infecciosidad por medio de la transmisión a individuos inmunológicamente desprotegidos;
- C. Los cambios clínicos o patológicos están asociados con la infección;
- D. La localización específica del agente patógeno se constata en los tejidos diana esperados.

A continuación, se describen los detalles del enfoque en tres etapas aplicado por el grupo *ad hoc* para la infección por el virus del síndrome de las manchas blancas, incluidas las siguientes consideraciones adicionales:

2.1. Etapa 1: Criterios para determinar si la vía de transmisión es coherente con las vías naturales de la transmisión de la infección

En el Cuadro 1, se describen las vías de transmisión de la infección por el virus del síndrome de las manchas blancas utilizadas por el grupo *ad hoc* al aplicar los criterios de la Etapa 1 a efectos de evaluar la susceptibilidad a la infección por el virus de las manchas blancas, además de otras consideraciones.

Cuadro 1: Vía de transmisión de la infección por el virus del síndrome de las manchas blancas

Vía de transmisión	Comentarios
La aparición natural agrupa las situaciones en que la infección se ha producido sin intervención experimental (por ejemplo, infección en poblaciones silvestres o de cría).	La infección experimental a través de vías invasivas (por ejemplo, inyección) no se consideró una vía natural de transmisión y, por tanto, no se evaluaron tales estudios.
0	
Procedimientos experimentales no invasivos: por ejemplo, cohabitación con hospedadores infectados, infección por inmersión o infección <i>per os.</i>	

2.2. Etapa 2: Criterios para determinar si el agente patógeno se ha identificado adecuadamente

El Cuadro 2 describe los métodos de identificación de los agentes patógenos para la infección por el virus del síndrome de las manchas blancas utilizados por el grupo *ad hoc* al aplicar la Etapa 2 para evaluar la susceptibilidad a esta infección, además de algunas consideraciones.

Cuadro 2: Identificación del patógeno para la infección por el virus del síndrome de las manchas blancas

Identificación del patógeno (virus del síndrome de las manchas blancas)	Comentarios
Prueba PCR en tiempo real con sonda específica TaqMan (por ejemplo, Moody et al., 2022)	Debido a la especificidad de la prueba PCR en tiempo real con sonda TaqMan, el análisis de secuencia no se consideró necesario para la
0	confirmación del patógeno.
Prueba PCR o PCR anidada seguida por un análisis de secuencias (por ejemplo, Lo <i>et al.</i> , 1996) ¹	No fue necesaria la secuenciación si, para identificar el patógeno, se utilizó un kit comercial
0	aprobado por la OMSA que utiliza la PCR.
Hibridación <i>in situ</i> utilizando una sonda específica para el virus del síndrome de las manchas blancas (por ejemplo, Nunan & Lightner, 1997)	
0	
Método LAMP utilizando una sonda específica para el virus del síndrome de las manchas blancas (por ejemplo, Kono <i>et al.</i> , 2004)	

Grupo *ad hoc* de la OMSA sobre la susceptibilidad de las especies de crustáceos a la infección por las enfermedades de la lista de la OMSA / Noviembre de 2023

La prueba PCR que utiliza dos o más kits de cebadores se consideró suficiente para la identificación del patógeno en lugar del análisis de la secuencia.

2.3. Etapa 3: Criterios para determinar si las pruebas indican que la presencia del agente patógeno constituye una infección

En el Cuadro 3, se describen las pruebas de infección utilizadas por el grupo *ad hoc* al aplicar la Etapa 3, con el fin de confirmar la susceptibilidad a la infección por el virus del síndrome de las manchas blancas.

Cuadro 3: Evidencia de infección por el virus del síndrome de las manchas blancas

	Evidencia d	le infección	
A: Replicación	B: Viabilidad / Infectividad	C: Patología / Signos clínicos ²	D: Localización
Presencia de cuerpos de inclusión característicos y etiquetado positivo de los cuerpos de inclusión mediante HIS (hibridación <i>in situ</i>) o IFAT (prueba de la inmunofluorescencia indirecta). O TEM mostrando presencia de viriones en células hospedadoras. O Demostración del aumento del número de copias por una prueba PCR con sonda específica TaqMan (por ejemplo, Moody et al., 2022). O Demostración del aumento del número de copias a lo largo del tiempo mediante qPCR con prueba PCR y secuenciación confirmatorias específicas para el virus. O Paso en serie de individuo SPF (libre de patógeno específico) de la misma especie.	Bioensayo de paso único a un individuo SPF (patógeno diana) de cualquier especie hospedadora susceptible y confirmación de la identificación del patógeno.	Inclusiones (de eosinófilas a basófilas) en los núcleos de las células de los órganos y tejidos diana. Núcleos del hospedador hipertróficos con cromatina marginada con/sin presencia de signos clínicos (por ejemplo, manchas blancas en la cutícula, moribundos, letárgicos).	Células de tejidos y órganos de origen ectodérmico y mesodérmico. Los tejidos y órganos diana incluyen el epitelio cuticular (branquias, pleópodos y apéndices), tejidos conectivos, tejido hematopoyético, hemocitos, glándula antenal y órgano linfoide ³ .

La patología o los signos clínicos pueden ser no específicos, variables e incluir a alguna o a todas las características enumeradas.

³ El órgano linfoide no está presente en la mayoría de los taxones hospedadores no crustáceos. En el caso de los taxones hospedadores no crustáceos, otros órganos y tejidos pueden mostrar indicios de infección por el virus del síndrome de las manchas blancas.

3. Puntuación y resultado de las evaluaciones

El Cuadro 4 describe las diferentes puntuaciones y los resultados de las evaluaciones realizadas por el grupo ad hoc.

Cuadro 4: Puntuación

Puntuación	Resultado
1	Especies evaluadas como susceptibles (como se describe en el Artículo 1.5.7.). Se propuso incluir estas especies en el Artículo 9.9.2. del Capítulo 9.9. Infección por el virus del síndrome de las manchas blancas del Código Acuático y en la Sección 2.2.1. del Capítulo 2.2.8. Infección por el virus del síndrome de las manchas blancas del Manual de las Pruebas de Diagnóstico para los Animales Acuáticos (Manual Acuático).
2	Especies evaluadas con pruebas incompletas de susceptibilidad (como se describe en el Artículo 1.5.8.) se propusieron para inclusión en la Sección 2.2.2. Especies con pruebas incompletas de susceptibilidad del Capítulo 2.2.8. Infección por el virus del síndrome de las manchas blancas del Manual Acuático.
3	Especies evaluadas que no cumplen con los criterios de inclusión o para las que existía información pendiente o contradictoria. Estas especies no se propusieron para la inclusión ni el Código Acuático ni en el Manual Acuático.
	Las excepciones fueron las especies evaluadas con resultados positivos de PCR del patógeno específico, pero que no han demostrado una infección activa. Se propuso incluir estas especies en el segundo párrafo de la Sección 2.2.2. Especies con pruebas incompletas de susceptibilidad del Capítulo 2.2.8. Infección por el virus del síndrome de las manchas blancas del Manual Acuático.
4	Especies evaluadas como no susceptibles.
SP	Especies sin puntuación (SP) debido a información irrelevante o insuficiente.

En el Cuadro 5, se resumen las evaluaciones de la susceptibilidad del hospedador a la infección por el virus del síndrome de las manchas blancas realizadas por el grupo ad hoc, junto con los resultados y las referencias pertinentes. Para la Etapa 3, tal y como se describe en el Capítulo 1.5. del Código Acuático, las pruebas que respaldan el criterio A son suficientes para determinar la infección. A falta de pruebas para cumplir el criterio A, se requerían al menos dos de los criterios B, C o D para determinar la presencia de la infección.

Indicadores clave para el cuadro de evaluación:

N:	Infección por vía natural	SÌ:	Demuestra que se cumple el criterio	ND:	No determinado
E:	Procedimientos experimentales (no-invasivos)	NO:	El criterio no se cumple	SP:	Sin puntuación
EI:	Procedimientos experimentales invasivos	NC:	No concluyente	N/A:	No aplica

Cuadro 5: Evaluaciones para la infección por el virus del síndrome de las manchas blancas

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2: Identificación del patógeno	Etapa 3: P	ruebas de la	a infección		Resultado	Año	Referencias	
	científico	común	transmisión de la infección		Α	В	С	D		evaluado		
				Puntua	ación 1							
	Austropotamobius pallipes	cangrejo a pinzas blancas	E y El	PCR y secuenciación	SÍ	SÍ	SÍ	SÍ	1	2016	Bateman <i>et al.</i> , 2012b	
Astacidae	Pacifastacus Ieniusculus	[signal crayfish]	E	PCR y secuenciación	SÍ	SÍ	SÍ	SÍ	1	2016	Bateman <i>et al.</i> , 2012b	
	Pontastacus Ieptodactylus	cangrejo de patas punteadas	E	HIS, TEM, y dot blot	SÍ	NO	SÍ	SÍ	1	2016	Corbel <i>et al.,</i> 2001	
Calanidae	Calanus pacificus californicus	sin nombre común	E	qPCR de los transcritos de VP28	SÍ	NO	NO	NO	1	2016	Mendoza-Cano et al., 2014	
	Faxonius limosus	[spinycheek crayfish]	E y El	TEM, dot blot	SÍ	NO	SÍ	SÍ	1	2016	Corbel <i>et al.</i> , 2001	
Cambaridae	Procambarus clarkii	[red swamp crawfish]	N y E y El	PCR, HIS y dot blot	SÍ	NO/ SÍ	SÍ	SÍ	1	2016	Baumgartner et al., 2009; Chang et al., 1998a; Du et al., 2008; Huang et al., 2001; Wang et al., 1998a; Xue et al., 2012; Xu et al., 2007	
	Procambarus zonangulus	sin nombre común	N	PCR y secuenciación	SÍ	NO	SÍ	SÍ	1	2016	Baumgartner <i>et al.</i> , 2009	
Cancridae	Cancer pagurus	buey de mar	E y El	HIS, TEM y dot blot	SÍ	SÍ	SÍ	SÍ	1	2016	Bateman <i>et al.</i> , 2012b; Corbel <i>et al.</i> , 2001	
Nephropidae	Homarus gammarus	bogavante	E y El	PCR y secuenciación	SÍ	SÍ	SÍ	SÍ	1	2016	Bateman et al., 2012a; Bateman et al., 2012b	
	Nephrops norvegicus	cigala	E y El	PCR y secuenciación	SÍ	SÍ	SÍ	SÍ	1	2016	Bateman <i>et al.</i> , 2012b	
Paguridae	Pagurus benedicti	sin nombre común	N y El	PCR, TEM	SÍ	NO	NO	NO	1	2016	Chang <i>et al.</i> , 2012	

Familia	Nombre	Nombre	Etapa 1: Vía de transmisión de la infección	Etapa 2: Identificación del patógeno	Etapa 3: P	ruebas de la	a infección		Resultado	Año .	Referencias
	científico	común			Α	В	С	D		evaluado	
	Palaemon carinicauda	camarón quilla	NyE	qPCR, dot blot, HIS	SÍ	SÍ	NO/ SÍ	SÍ	1	2016	Dun <i>et al.,</i> 2015; Xu <i>et al.,</i> 2007
Palaemonidae	Palaemon orientis	sin nombre común	E	PCR, HIS	SÍ	NO	SÍ	SÍ	1	2016	Chang <i>et al.</i> , 1998b; Wang <i>et al.</i> , 1998a
	Palaemon ritteri	camarón de mareas	E	PCR y secuenciación	SÍ	NO	SÍ	NO	1	2016	Sánchez-Paz et al., 2015
Palinuridae	Panulirus penicillatus	langosta horquilla	E	PCR, HIS	SÍ	NO	SÍ	SÍ	1	2016	Chang <i>et al.,</i> 1998a; Chang <i>et al.,</i> 1998b; Wang <i>et al.,</i> 1998a
	Panulirus versicolor	langosta colorete	E	PCR, HIS	SÍ	NO	SÍ	SÍ	1	2016	Chang <i>et al.,</i> 1998a; Chang <i>et al.,</i> 1998b
Parastacidae	Cherax quadricarinatus	[red claw crayfish]	E y El	PCR, qPCR, IHC	SÍ	SÍ	SÍ	SÍ	1	2016	Gao <i>et al.</i> , 2014; Soowannayan <i>et al.</i> , 2011
	Metapenaeus ensis	camarón resbaloso	NyE	PCR, HIS y dot blot	sí	NO	SÍ	SÍ	1	2016	Chang <i>et al.</i> , 1998a; Chang <i>et al.</i> , 1998b; Wang <i>et al.</i> , 1998a; Wang <i>et al.</i> , 1998b; Xu <i>et al.</i> , 2007
Penaeidae	Penaeus chinensis	langostino carnoso	N y El	qPCR, TEM, dot blot, HIS	SÍ	SÍ	SÍ	SÍ	1	2016	Gao et al., 2011; Huang et al., 2001; Jang et al., 2009; Zhan et al., 1998; Xu et al., 2007
	Penaeus indicus	langostino blanco de la India	N	PCR y secuenciación	SÍ	NO	SÍ	SÍ	1	2016	Toms et al., 2015; Rajan et al., 2000; Rajendran et al., 1999; Hameed et al., 2000; Tang et al., 2012

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: Pi	ruebas de la	infección		Resultado	Año	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
	Penaeus japonicus	langostino japonés	NyE	PCR	SÍ	SÍ	SÍ	SÍ	1	2016	Chou et al., 1998; Feng et al., 2014; Lo et al., 1996b; Wang et al., 1998b; You et al., 2010; Zhan et al., 1998; Zhang et al., 2008
	Penaeus monodon	langostino jumbo	N	PCR, HIS, TEM y dot blot	SÍ	SÍ	SÍ	SÍ	1	2016	Toms et al., 2015; Lo et al., 1996b; Rajendran et al., 1999; Hameed et al., 2000; Wang et al., 1998a; Wang et al., 1998b; Zhan et al., 1998; Xu et al., 2007
	Penaeus paulensis	langostino de Sao Paulo	N	PCR y secuenciación	SÍ	NO	SÍ	SÍ	1	2016	Cavalli <i>et al</i> ., 2011
	_	camarón azul	N	PCR (5 sets de cebadores)	SÍ	ND	ND	SÍ	1	2023	Galaviz-Silva <i>et al.</i> , 2004
	Penaeus stylirostris		E	Inóculo no caracterizado - sólo histopatología típica	SÍ	SÍ	SÍ	SÍ	2	2016	Lightner <i>et al</i> ., 1998
	Penaeus vannamei	camarón patiblanco	NyE	PCR, HIS, histología y dot blot	SÍ	SÍ	SÍ	SÍ	1	2016	Cuéllar-Anjel <i>et al.</i> , 2012; Lightner <i>et al.</i> , 1998; Lo <i>et al.</i> , 1999; Wang <i>et al.</i> , 1998b; Xu <i>et al.</i> , 2007
	Trachysalambria curvirostris	[southern rough shrimp]	E	PCR, HIS	sí	NO	sí	SÍ	1	2016	Chang <i>et al.</i> , 1998b; Wang <i>et al.</i> , 1998a
Polybiidae	Liocarcinus depurator	falsa necora	E	TEM, HIS y dot blot	SÍ	NO	sí	SÍ	1	2016	Corbel <i>et al.</i> , 2001
i Olybiidae	Necora puber	nécora	E	PCR, TEM, HIS y dot blot	sí	NO	SÍ	SÍ	1	2016	Corbel <i>et al</i> ., 2001

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2: Identificación del	Etapa 3: P	ruebas de la	infección			Año .	Referencias
	científico	común	transmisión de la infección	patógeno	Α	В	С	D		evaluado	
	Charybdis (Charybdis) granulata	sin nombre común	E	PCR, HIS	SÍ	NO	SÍ	SÍ	1	2016	Chang <i>et al</i> ., 1998b; Wang <i>et al</i> ., 1998a
	Portunus sanguinolentus	[threespot swimming crab]	NyEyEl	PCR, HIS	SÍ	NO	SÍ	SÍ	1	2016	Chang et al., 1998a; Chang et al., 1998b; Kou et al., 1998; Lo et al., 1996a; Lo et al., 1996b; Hameed et al., 2003; Wang et al., 1998b
Portunidae	Scylla serrata	cangrejo de manglares	NyE	PCR, HIS	SÍ	SÍ	SÍ	SÍ	1	2016	Chen et al., 2000; Toms et al., 2015; Kanchanaphum et al., 1998; Liu et al., 2011a; Liu et al., 2011b; Lo et al., 1996a; Lo et al., 1996b; Rajendran et al., 1999; Overstreet et al., 2009; Supamattaya et al., 1998
Varunidae	Eriocheir sinensis	cangrejo chino	N y E y El	PCR y secuenciación	SÍ	SÍ	SÍ	SÍ	1	2016	Bateman <i>et al.</i> , 2012b; Ding <i>et al.</i> , 2015
	•			Puntua	ción 2				'		
Carcinidae	Carcinus maenas	cangrejo verde	E y El	PCR	SÍ	sí	SÍ	SÍ	2	2016	Bateman <i>et al.</i> , 2012b; Corbel <i>et al.</i> , 2001
Ergasilidae	Ergasilus manicatus	sin nombre común	E	qPCR	SÍ	NO	NO	NO	2	2016	Overstreet <i>et al.</i> , 2009
Gecarcinucidae	Spiralothelphusa hydrodroma	sin nombre común	E y El	PCR	SÍ	SÍ	SÍ	SÍ	2	2016	Sundar Raj <i>et al</i> ., 2012; Sahul Hameed <i>et al</i> ., 2001
	Vela pulvinata	sin nombre común	E y El	PCR	SÍ	NO	SÍ	SÍ	2	2016	Sahul Hameed <i>et</i> al., 2001

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año .	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
Grapsidae	Metopograpsus sp.	N/A	E	EM en <i>P. vannamei</i> (sin PCR)	SÍ	SÍ	SÍ	SÍ	2	2016	Rajendran <i>et al.</i> , 1999
Macrophthalmidae	Macrophthalmus (Mareotis) japonicus	sin nombre común	N	Dot blot, HIS	SÍ	NO	SÍ	SÍ	2	2016	Xu <i>et al.</i> , 2007
Ocypodidae	Leptuca pugilator	[Atlantic sand fiddler]	E y El	PCR, HIS	SÍ	SÍ	SÍ	SÍ	2	2016	Kanchanaphum <i>et</i> al., 1998
	Macrobrachium idella	camarón cenceño	E	Histopatología y técnica de western blot	SÍ	SÍ	SÍ	SÍ	2	2016	Rajendran <i>et al.,</i> 1999; Sahul Hameed <i>et al.,</i> 2000
	Macrobrachium Iamarrei	camarón kuncho	E	Histopatología y técnica de western blot	SÍ	SÍ	SÍ	SÍ	2	2016	Sahul Hameed et al., 2000
	Macrobrachium nipponense	camarón nipón	E	PCR	SÍ	NO	SÍ	SÍ	2	2016	Yun <i>et al.</i> , 2014
Palaemonidae	Macrobrachium rosenbergii	langostino de río	Eyl	Varios métodos utilizados	SÍ	SÍ	SÍ	SÍ	2	2016	Corteel et al., 2012; Gudkovs et al., 2014; Shahadat Hossain et al., 2001a; Lo et al., 1996a; Rajendran et al., 1999; Sahul Hameed et al., 2000
	Palaemon adspersus	camarón báltico	E y El	PCR, TEM, ISH y dot blot	SÍ	SÍ	SÍ	SÍ	2	2016	Corbel <i>et al</i> ., 2001
Palinuridae	Panulirus homarus	langosta festonada	El	EM en <i>P. vannamei</i> – sin PCR ni secuenciación	SÍ	SÍ	SÍ	SÍ	2	2016	Rajendran <i>et al.,</i> 1999
raiiiiuiiuae	Panulirus polyphagus	langosta fanguera	E	EM en <i>P. vannamei</i> – sin PCR ni secuenciación	SÍ	SÍ	SÍ	SÍ	2	2016	Rajendran <i>et al.,</i> 1999
Penaeidae	Metapenaeus dobsoni	camarón kadal	NyE	PCR	SÍ	SÍ	SÍ	SÍ	2	2016	Shahadat Hossain et al., 2001a; Rajendran et al., 1999

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2: Identificación del patógeno	Etapa 3: P	ruebas de la	a infección		Resultado	Año	Referencias	
	científico	común	transmisión de la infección		Α	В	С	D		evaluado		
	Metapenaeus monoceros	gamba moteada	N y E	PCR	SÍ	SÍ	SÍ	SÍ	2	2016	Joseph <i>et al.</i> , 2015; Rajendran <i>et al.</i> , 1999; Yan <i>et al.</i> , 2004	
	Penaeus aztecus	camarón café norteño	E	Inóculo no caracterizado - sólo histopatología típica	SÍ	NO	SÍ	SÍ	2	2016	Lightner <i>et al.</i> , 1998	
			N	PCR (3 sets de cebadores)	ND	SÍ	ND	ND	3	2023	Chapman <i>et al</i> ., 2004	
	Penaeus	camarón rosado norteño	E	Inóculo no caracterizado - sólo histopatología típica	SÍ	NO	SÍ	SÍ	2	2016	Lightner <i>et al.</i> , 1998	
	duorarum			N	Negativo (PCR – 3 sets de cebadores) 4	ND	ND	ND	ND	SP	2023	Chapman <i>et al</i> ., 2004.
			E	NO – solo histología	SÍ	SÍ	SÍ	SÍ	SP	2023	Qiong-Wang <i>et al.</i> , 1999	
	Penaeus	langostino	NyE	PCR, TEM/IFA	SÍ	SÍ	SÍ	sí	2	2016	Flegel <i>et al.</i> , 2013; Wang <i>et al.</i> , 2002	
	merguiensis	banana	N	PCR anidada y secuenciación	ND	ND	ND	sí	2	2023	Saravanan <i>et al</i> ., 2017	
			N	PCR (3 sets de cebadores)	SÍ ⁵	SÍ	ND	ND	2	2023	Chapman <i>et al.</i> , 2004	
Pe	Penaeus setiferus	camarón blanco norteño	E	Inóculo no caracterizado - sólo histopatología típica	SÍ	SÍ	SÍ	SÍ	2	2016	Lightner <i>et al</i> ., 1998	
			N	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	3	2023	Muhammad <i>et al.</i> , 2020	

⁴ El número de animales cribados en el estudio fue bajo y resultaron negativos mediante el cribado con tres (3) conjuntos de cebadores.

⁵ Sólo un animal de los 586 analizados mostró indicios de replicación del virus del síndrome de las manchas blancas (positivo para la etapa 3A).

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	А	В	С	D		evaluado	
	Callinectes		E y El	Prueba PCR en tiempo real con sondaTaqMan	SÍ	ND	ND	ND	1 ⁶	2023	Blaylock <i>et al.</i> , 2019
	sapidus	cangrejo azul	N	Prueba PCR en tiempo real con sondaTaqMan	ND	SÍ	ND	ND	3	2023	Powell <i>et al</i> ., 2015
Portunidae	Charybdis (Charybdis) feriata	[crucifix crab]	NyE	PCR, HIS	SÍ	NO	SÍ	SÍ	2	2016	Shahadat Hossain et al., 2001a; Kou et al., 1998; Lo et al., 1996a; Wang et al., 1998a
Totalidae	Portunus pelagicus	jaiba azul	N y E y El	PCR	SÍ	NO	SÍ	SÍ	2	2016	Kou <i>et al.</i> , 1998; Supamattaya <i>et al.</i> , 1998
	Portunus trituberculatus	jaiba gazami	N	qPCR	NO	NO	NO	NO	2	2016	Meng <i>et al</i> ., 2009
	Scylla	[purple mud	NyE	PCR anidada	SÍ	SÍ	SÍ	SÍ	2	2023	Gopalakrishnan <i>et</i> al., 2011
	tranquebarica	crab]	N y E y El	PCR (sólo vías naturales)	SÍ	SÍ	SÍ	SÍ	2	2016	Joseph <i>et al.</i> , 2015; Rajendran <i>et al.</i> , 1999
Scyllaridae	Scyllarus arctus	santiaguiño	E y El	TEM, dot blot	SÍ	NO	SÍ	NO	2	2016	Corbel <i>et al.</i> , 2001
Sergestidae	Acetes sp.	N/A	E y El	PCR	SÍ	NO	SÍ	SÍ	2	2016	Supamattaya <i>et al.</i> , 1998
Sesarmidae	Sesarma sp.	N/A	E y El	PCR	SÍ	SÍ	SÍ	SÍ	2	2016	Kanchanaphum <i>et al.</i> , 1998; Rajendran <i>et al.</i> , 1999
Varunidae	Helice tientsinensis	sin nombre común	N	dot blot, HIS	SÍ	NO	SÍ	SÍ	2	2016	Xu et al., 2007

El grupo ad hoc no tomó en consideración que el único documento clasificado con una puntuación de "1" fuera lo suficientemente sólido para una puntuación global de "1" para esta especie hospedadora.

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
		1		Puntua	ción 3						1
	Alabaya		ND	PCR anidada	NO	NO	NO	NO	3	2016	Takahashi <i>et al.,</i> 2003
	Alpheus brevicristatus	camarón tepo	EI	PCR anidada, dot blot, HIS	SÍ	SÍ	SÍ	SÍ	SP	2016	Takahashi <i>et al.,</i> 2003; Xu <i>et al.,</i> 2007
Alpheidae	Alpheus digitalis	camarón tenaza	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al</i> ., 2021
	Alpheus japonicus	camarón chasqueador	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al</i> ., 2021
	Alpheus lobidens	[brownbar snapping shrimp]	ND	PCR anidada	NO	NO	NO	NO	3	2016	Takahashi et al., 2003
	Artemia salina	artemia	ND	PCR anidada	NO	NO	NO	NO	3	2016	Otta <i>et al.</i> , 1999
Artemiidae	Artemia sp.	N/A	NyE	Dot blot, HIS	NO	NO	NO	NO	3	2016	Xu <i>et al.</i> , 2007
Arterillidae	Arternia Sp.	IN/A	E	PCR anidada	ND	ND	ND	ND	3	2023	Zhang <i>et al.,</i> 2010
	Nikora sp.	N/A	E	PCR	NO	NO	NO	NO	3	2016	Zhang <i>et al.</i> , 2008
Astacidae	Astacus astacus	cangrejo de río de patas rojas	E y El	PCR anidada	NO	NO	NO	NO	3	2016	Jiravanichpaisal et al., 2004
Balanidae	Belanus sp.	N/A	N y E y El	PCR y secuenciación; dot blot, HIS	NO/ SÍ	NO/ SÍ	NO/ SÍ	NO/ SÍ	3	2016	Ramirez-Douriet et al., 2005; Xu et al., 2007
Calappidae	Calappa philargius	[spectacled box crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
Cambaridae	Faxonius punctimanus	[spothand crayfish]	N	PCR, sonda	NO	NO	NO	NO	3	2016	Lo <i>et al.,</i> 1999
Crangonidae	Crangon affinis	quisquilla japonesa	E	PCR, anticuerpo monoclonal	NO	NO	YES	NO	3	2016	Gong <i>et al.,</i> 2010

⁷ Los resultados de este estudio se referían a todos los cangrejos en estudio y no diferenciaban entre animales E y El.

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año .	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
			N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Cyclopidae	Apocyclops royi	sin nombre común	E	PCR y secuenciación	YES	NO	NO	NO	3	2016	Chang <i>et al</i> ., 2011
Diogenidae	Diogenes nitidimanus	sin nombre común	EI	PCR	NO	NO	NO	NO	3	2016	Chang <i>et al</i> ., 2012
Dorippidae	Paradorippe granulata	[granulated mask crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
Epialtidae	Doclea muricata	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
Euphausiidae	Euphausia pacifica	[Isada krill]	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Galenidae	Halimede ochtodes	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed <i>et</i> al., 2003
Grapsidae	Grapsus albolineatus	[mottled crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
Grapsidae	Metopograpsus messor	sin nombre común	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain et al., 2001a
Llippolytidoo	Latreutes anoplonyx	camarón medusa	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Hippolytidae	Latreutes planirostris	camarón romo	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Leucosiidae	Philyra syndactyla	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed <i>et</i> al., 2003
Lithodidae	Lithodes maja	centolla de roca	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
Macrophthalmide	Macrophthalmus (Macrophthalmus) sulcatus	sin nombre común	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain et al., 2001a
Matutidae	Ashtoret miersii	sin nombre común	E y El	PCR	ND	ND	NC ⁷	sí	3	2023	Sahul Hameed et al., 2003

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
	Matuta planipes	[flower moon crab]	N	PCR	NO	NO	NO	NO	3	2016	Otta <i>et al.</i> , 1999
Menippidae	Menippe rumphii	[maroon stone crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al.,2003
	Gelasimus vocans	[orange fiddler crab]	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain et al., 2001a
	Leptuca panacea	[gulf sand fiddler]	N y El	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	3	2023	Muhammed <i>et al.,</i> 2020
	Leptuca spinicarpa	[spined fiddler]	N	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	3	2023	Muhammed <i>et al.,</i> 2020
Ocypodidae	Minuca Iongisignalis	[gulf marsh fiddler]	N	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	3	2023	Muhammed <i>et al.,</i> 2020
	Minuca minax	[redjointed fiddler]	N	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	3	2023	Muhammed <i>et al.,</i> 2020
	Minuca rapax	[mudflat fiddler]	N	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	3	2023	Muhammed <i>et al.,</i> 2020
Paguridae	Pagurus angustus	sin nombre común	EI	PCR	NO	NO	NO	NO	3	2016	Chang <i>et al.</i> , 2012
	Palaemon gravieri	camarón chino de asequia	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Palaemonidae	Palaemon macrodactylus	camarón emigrante	N	PCR, qPCR	NO	NO	NO	NO	3	2016	Martorelli <i>et al.,</i> 2010
	Palaemon pandaliformis	camarón potitinga	N	Método LAMP	ND	ND	ND	NO ⁸	3	2023	Bandeira <i>et al</i> ., 2018

⁸ Se utilizó tejido branquial para identificar el patógeno; podría tratarse de una detección en la superficie del animal y no dentro del tejido.

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año .	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
		[daggerblade	N y El	qPCR	NO	NO	SÍ	NO	3	2016	Muhammed y Lotz, 2015
	Palaemon pugio	grass shrimp]	N y El	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	3	2023	Muhammed <i>et al.,</i> 2020
	Palaemon sp.	N/A	N	PCR	NO	NO	NO	NO	3	2016	Lo <i>et al.</i> , 1996a
Parthenopidae	Parthenope prensor	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed <i>et</i> al., 2003
Pasiphaeidae	Leptochela gracilis	camaroncito cristal	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu <i>et al</i> ., 2021
	Artemesia Ionginaris	camarón estilete argentino	N	PCR/qPCR	NO	NO	NO	NO	3	2016	Martorelli <i>et al</i> ., 2010
	Metapenaeus affinis	camarón jinga	N	PCR	NO	NO	NO	NO	3	2016	Gholamhoseini <i>et</i> al., 2013
	Metapenaeus brevicornis	camarón amarillo	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain et al., 2001b
Penaeidae	Parapenaeopsis stylifera	camarón kiddi	N	PCR, sondas genéticas	NO	NO	NO	NO	3	2016	Gholamhoseini <i>et al.</i> , 2013; Shahadat Hossain <i>et al.</i> , 2001a
	Penaeus californiensis	camarón patiamarillo	N	PCR y secuenciación	NO	NO	NO	NO	3	2016	Macías-Rodríguez et al., 2014
	Penaeus penicillatus	camarón rabo colorado	N y E	PCR	NO	NO	NO	NO	3	2016	Chou <i>et al</i> ., 1998; Lo <i>et al</i> ., 1996a; Wang <i>et al</i> ., 1998a
	Penaeus semisulcatus	langostino tigre verde	NyE	PCR	NO	NO	NO	NO	3	2016	Lo <i>et al.</i> , 1996a; Rajendran <i>et al.</i> , 1999; Wang <i>et al.</i> , 1998a
Portunidae	Callinectes arcuatus	jaliba cuata	N	PCR (5 sets de cebadores)	ND	ND	ND	ND	3	2023	Galaviz-Silva <i>et al.</i> , 2004

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
			N	PCR y secuenciación	NO	NO	NO	NO	3	2016	Macías-Rodríguez et al., 2014
	Charybdis (Charybdis) annulata	[banded- legged swimming crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
	Charybdis (Charybdis) japonica	[Japanese swimming crab]	N	PCR	NO	NO	NO	NO	3	2016	Takahashi <i>et al</i> ., 2003
	Charybdis (Charybdis) lucifer	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
	Charybdis	[ridged	NyE	PCR	NO	NO	NO	NO	3	2016	Kou <i>et al</i> ., 1998
	(Charybdis) natator	swimming crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
	Podophthalmus vigil	[periscope crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
	Portunus sanguinolentus	[threespot swimming crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2002
	Portunus trituberculatus	jaiba gazami	NyEyEl	qPCR, TEM, histopatología	SÍ	NO	SÍ	SÍ	3	2016	Muhammad and Lotz, 2015
	Thalamita danae	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed et al., 2003
Sergestidae	Acetes chinensis	camaroncillo mauxia norteño	N	Método LAMP, PCR y secuenciación	ND	ND	ND	ND	3	2023	Xu et al., 2021
Sesarmidae	Armases cinereum	[squareback marsh crab]	N	solo qPCR	ND	ND	ND	SÍ	3	2023	Muhammad <i>et al</i> ., 2020
Sesamildae	Circulium rotundatum	sin nombre común	N	PCR	NO	NO	NO	NO	3	2016	Otta <i>et al</i> ., 1999

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año .	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
Solenoceridae	Solenocera crassicornis	camarón fanguero de orilla	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain et al., 2001a
Squillidae	Squilla mantis	galera ocelada	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain et al., 2001a
Upogebiidae	Austinogebia edulis	sin nombre común	N	PCR	ND	ND	ND	SÍ	3	2023	Zhu <i>et al</i> ., 2019
	Chhapgarus intermedius	sin nombre común	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain et al., 2001a; Shahadat Hossain et al., 2001b
Varunidae	Cyrtograpsus angulatus	sin nombre común	N	PCR, qPCR	NO	NO	NO	NO	3	2016	Martorelli <i>et al</i> ., 2010
	Helice tridens	sin nombre común	N	PCR	NO	NO	NO	NO	3	2016	Kou <i>et al</i> ., 1998
	Neohelice granulata	sin nombre común	N	PCR y secuenciación	NO	NO	NO	NO	3	2016	Cavalli <i>et al.</i> , 2013; Marques <i>et al.</i> , 2011
	Atergatis integerrimus	[red egg crab]	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed <i>et</i> al., 2003
Xanthidae	Demania splendida	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed <i>et al</i> ., 2003
	Liagore rubronaculata	sin nombre común	E y El	PCR	ND	ND	NC ⁷	SÍ	3	2023	Sahul Hameed <i>et</i> al., 2003
				Sin puntua	ción (SP)						
Artemiidae	Artemia franciscana	sin nombre común	E	NO – PCR	ND	ND	ND	ND	SP	2023	Sahul Hameed <i>et</i> al., 2002
Calappidae	Calappa lophos	[common box crab]	N y El	NO - PCR	NO	NO	NO	NO	SP	2023	Wang <i>et al.,</i> 1998a
Callianassidae	Neotrypaea harmandi	sin nombre común	EI	Dot blot, HIS	SÍ	SÍ	SÍ	SÍ	SP	2016	Xu <i>et al.</i> , 2007

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	a infección		Resultado	Año	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
Lysmatidae	Lysmata vittata	camarón rayado indio	N	Negativo con método LAMP, PCR y secuenciación	ND	ND	ND	ND	SP	2023	Xu <i>et al.</i> , 2021
Nephropidae	Homarus americanus	bogavante americano	EI	Prueba PCR en tiempo real con sondaTaqMan	N/A	N/A	N/A	N/A	SP	2023	Clark <i>et al</i> ., 2013
	Panulirus argus	langosta común del Caribe	E y El	Prueba PCR en tiempo real con sondaTaqMan	NC ⁹	ND	NC ⁹	NC ⁹	SP	2023	Ross <i>et al.,</i> 2019
Palinuridae	Panulirus Iongpipes	langosta duende	N y El	NO - PCR	NO	NO	NO	NO	SP	2023	Wang <i>et al.,</i> 1998a
	Panulirus ornatus	langosta ornamentada	EI	NO - PCR	SÍ	SÍ	SÍ	SÍ	SP	2023	Rajendran <i>et al.,</i> 1999; Wang <i>et al.,</i> 1998a
Panopeidae	Panopeus obesus	[saltmarsh mud crab]	N	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	SP	2023	Muhammed <i>et al.,</i> 2020
	Metapenaeus joyneri	camarón siba	N	Negativo con método LAMP, PCR y secuenciación	ND	ND	ND	ND	SP	2023	Xu et al., 2021
Penaeidae	Penaeus brasiliensis	camarón rosado con manchas	N	NC ¹⁰	NO	NO	SÍ	SÍ	SP	2023	Cavalli <i>et al.</i> , 2011
	Penaeus schmitti	langostino blanco sureño	EI	HIS	SÍ	ND	SÍ	SÍ	SP	2023	Unzueta- Bustamante <i>et al.</i> , 2004
Parastacidae	Cherax destructor	[yabby crayfish]	E y El	NO - histopatología y dot blot	SÍ	NO	SÍ	SÍ	SP	2023	Edgerton <i>et al.</i> , 2004
Portunidae	Scylla olivacea	[orange mud crab]	EI	qPCR	SÍ	NO	SÍ	SÍ	SP	2023	Somboonna <i>et al.</i> , 2010

Los autores del estudio no diferenciaron entre los dos grupos experimentales y sólo uno de los siete animales con exposición a través del agua dio positivo bajo mediante la prueba qPCR (499 copias en 0,25 mg de hemolinfa).

¹⁰ Este estudio no indicaba si los resultados de la prueba PCR y del análisis de secuencias correspondían a esta especie hospedadora.

Familia	Nombre	Nombre	Etapa 1: Vía de	Etapa 2:	Etapa 3: P	ruebas de la	infección		Resultado	Año	Referencias
	científico	común	transmisión de la infección	Identificación del patógeno	Α	В	С	D		evaluado	
	Scylla	[green mud	EI	Prueba PCR en tiempo real con sondaTaqMan	SÍ	ND	ND	SÍ	SP	2023	Gong <i>et al</i> ., 2022
	paramamosain	crab]	EI	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	SP	2023	Kong <i>et al</i> ., 2020
Sesarmidae	Sesarma reticulatum	[purple marsh crab]	N	Prueba PCR en tiempo real con sondaTaqMan	ND	ND	ND	SÍ	SP	2023	Muhammad <i>et al.</i> , 2020
Sicyoniidae	Sicyonia lancifer	camarón de piedra lanzón	N	Negativo con método LAMP, PCR y secuenciación	ND	ND	ND	ND	SP	2023	Xu <i>et al.</i> , 2021
Squillidae	Oratosquilla oratoria	[Japanese squillid mantis shrimp]	N	Negativo con método LAMP, PCR y secuenciación	ND	ND	ND	ND	SP	2023	Xu <i>et al</i> ., 2021
Thoridae	Eualus sinensis	camarón iso	N	Negativo con método LAMP, PCR y secuenciación	ND	ND	ND	ND	SP	2023	Xu et al., 2021
Upogebiidea	Upogebia major	[Japanese mud shrimp]	N	Negativo con método LAMP, PCR y secuenciación	ND	ND	ND	ND	SP	2023	Xu et al., 2021
Varunidae	Hemigrapsus sanguineus	[Asian shore crab]	EI	dot blot, HIS	sí	SÍ	sí	SÍ	SP	2023	Xu <i>et al.</i> , 2007

Cuadro 6: Evaluaciones para la infección por el virus del síndrome de las manchas blancas para los no crustáceos

Familia	Nombre científico	Nombre común	Etapa 1: Vía de transmisión de la	Etapa 2: Identificación del patógeno	Etapa 3	3: Prueba ón	s de la		Resultado	Año evaluado	Referencias
			infección		Α	В	С	D			
Ampullariidae	Pomacea linnaei	sin nombre común	N	Método LAMP	ND	ND	ND	ND	NS	2023	Bandeira <i>et al.,</i> 2018
Brachionidae	Brachionus plicatillis	sin nombre común	E	PCR	ND	ND	ND	ND	3	2023	Corre <i>et al.</i> , 2012

Familia	Nombre científico	Nombre común	Etapa 1: Vía de transmisión de la	Etapa 2: Identificación del patógeno	Etapa 3	3: Prueba ón	is de la		Resultado	Año evaluado	Referencias
			infección		Α	В	С	D			
	Brachionus urceolaris	sin nombre común	N	PCR	NO	NO	NO	NO	3	2016	Yan <i>et al.,</i> 2004
Eunicidae	Marphysa gravelyi	sin nombre común	NyE	PCR	ND	NC ¹¹	ND	ND	3	2023	Vijayan <i>et al.</i> , 2005
Nereididae	Dendroneresis sp.	N/A	N	PCR y secuenciación	SÍ	NO	SÍ	NO	1	2016	Esrina <i>et al.,</i> 2012; Esrina <i>et al.,</i> 2013; Haryadi <i>et al.,</i> 2015
Ostreidae	Magallana [Syn. Crassostrea] gigas	ostión japonés	N	PCR y secuenciación	ND	ND	ND	ND	3	2023	Vazquez-Bouchard et al., 2010
Thiaridae	Melanoides tuberculata	[red-rim Melania]	N	Método LAMP	ND	ND	ND	ND	3	2023	Bandeira <i>et al</i> ., 2018
Veneridae	Meretrix Iusoria	[Japanese hard clam]	E	PCR	SÍ	SÍ	ND	ND	2	2023	Chang <i>et al</i> ., 2011

⁻⁻⁻⁻⁻

En este estudio, se alimentó a *P. monodon* con gusanos poliquetos infectados por el virus del síndrome de las manchas blancas y la identificación del patógeno se realizó mediante la prueba PCR y sin secuenciación, por lo que el grupo *ad hoc* concluyó que el virus detectado podía proceder del material original.

4. Resultados

El grupo *ad hoc* acordó que las 32 especies cumplen los criterios de inclusión en la lista de especies susceptibles a la infección por el virus del síndrome de las manchas blancas, de conformidad con el Capítulo 1.5. del *Código Acuático*. Se propone incluir estas especies en la lista del Artículo 9.9.2 del Capítulo 9.9. *Infección por el virus del síndrome de las manchas blancas*. Dichas especies figuran en el siguiente cuadro.

Familia	Nombre científico	Nombre común
Astacidae	Austropotamobius pallipes	cangrejo a pinzas blancas
	Pacifastacus leniusculus	[signal crayfish]
	Pontastacus leptodactylus	cangrejo de patas punteadas
Calanidae	Calanus pacificus californicus	N/A
Cambaridae	Faxonius limosus	[spinycheek crayfish]
	Procambarus clarkii	cangrejo de las marismas
	Procambarus zonangulus	N/A
Cancridae	Cancer pagurus	buey de mar
Nephropidae	Homarus gammarus	bogavante
	Nephrops norvegicus	cigala
Paguridae	Pagurus benedicti	N/A
Palaemonidae	Palaemon carinicauda	camarón quilla
	Palaemon orientis	N/A
	Palaemon ritteri	camarón de mareas
Palinuridae	Panulirus penicillatus	langosta horquilla
	Panulirus versicolor	langosta colorete
Parastacidae	Cherax quadricarinatus	[red claw crayfish]
Penaeidae	Metapenaeus ensis	camarón resbaloso
	Penaeus chinensi	langostino carnoso
	Penaeus indicus	langostino blanco de la India
	Penaeus japonicus	langostino japonés
	Penaeus monodon	langostino jumbo
	Penaeus paulensis	langostino de Sao Paulo
	Penaeus stylirostris	camarón azul
	Penaeus vannamei	camarón patiblanco
	Trachysalambria curvirostris	[southern rough shrimp]
Polybiidae	Liocarcinus depurator	falsa nécora
	Necora puber	nécora
Portunidae	Charybdis (Charybdis) granulata	N/A
	Portunus sanguinolentus	[threespot swimming crab]
	Scylla serrata	[Indo-Pacific swamp crab]
Varunidae	Eriocheir sinensis	cangrejo chino

El grupo *ad hoc* acordó que *Dendroneresis sp.* también cumplía los criterios de inclusión en la lista de especies susceptibles a la infección por el virus del síndrome de las manchas blancas, de acuerdo con el Capítulo 1.5. del *Código Acuático*.

Veintinueve especies fueron evaluadas como especies con pruebas incompletas de susceptibilidad y se propuso su inclusión en la Sección 2.2.2. del Capítulo 2.2.8. del *Manual Acuático*. Estas especies se muestran en la tabla siguiente:

Familia	Nombre científico	Nombre común
Carcinidae	Carcinus maenas	cangrejo verde
Ergasilidae	Ergasilus manicatus	N/A
Gecarcinucidae	Spiralothelphusa hydrodroma	N/A
	Vela pulvinata	N/A
Grapsidae	Metopograpsus sp.	N/A
Macrophthalmidae	Macrophthalmus (Mareotis) japonicus	N/A
Ocypodidae	Leptuca pugilator	[Atlantic sand fiddler]
Palaemonidae	Macrobrachium idella	camarón cenceño
	Macrobrachium lamarrei	camarón kuncho
	Macrobrachium nipponense	camarón nipón
	Macrobrachium rosenbergii	langostino de río
	Palaemon adspersus	camarón báltico
Palinuridae	Panulirus homarus	langosta festoneada
	Panulirus polyphagus	langosta fanguera
Penaeidae	Metapenaeus dobsoni	camarón kadal
	Metapenaeus monoceros	gamba moteada
	Penaeus aztecus	camarón café norteño
	Penaeus duorarum	camarón rosado norteño
	Penaeus merguiensis	langostino banana
	Penaeus setiferus	camarón blanco norteño
Portunidae	Callinectes sapidus	cangrejo azul
	Charybdis (Charybdis) feriata	sin nombre común
	Portunus pelagicus	jaiba azul
	Portunus trituberculatus	jaiba gazami
	Scylla tranquebarica	[purple mud crab]
Scyllaridae	Scyllarus arctus	santiaguiño
Sergestidae	Acetes sp.	N/A
Sesarmidae	Sesarma sp.	N/A
Varunidae	Helice tientsinensis	N/A

Se notificaron resultados positivos a la prueba PCR específica del patógeno en las setenta y uno especies de la lista. Se propuso que estas especies se incluyeran en el segundo párrafo de la Sección 2.2.2. del Capítulo 2.2.8. *Infección por el virus del síndrome de las manchas blancas* del *Manual Acuático*. Estas especies se muestran en el siguiente cuadro:

Familia	Nombre científico	Nombre común
Alpheidae	Alpheus brevicristatus	camarón tepo
	Alpheus digitalis	camarón tenaza
	Alpheus japonicus	Camarón chasqueador
	Alpheus lobidens	[brownbar snapping shrimp]

Familia	Nombre científico	Nombre común
Artemiidae	Artemia salina	artemia
	Artemia sp.	N/A
	Nikora sp.	N/A
Astacidae	Astacus astacus	cangrejo de río de patas rojas
Balanidae	Belanus sp.	N/A
Calappidae	Calappa philargius	[spectacled box crab]
Cambaridae	Faxonius punctimanus	[spothand crayfish]
Crangonidae	Crangon affinis	quisquilla japonesa
Cyclopidae	Apocyclops royi	N/A
Diogenidae	Diogenes nitidimanus	N/A
Dorippidae	Paradorippe granulata	[granulated mask crab]
Epialtidae	Doclea muricata	N/A
Euphausiidae	Euphausia pacifica	[Isada krill]
Galenidae	Halimede ochtodes	N/A
Grapsidae	Grapsus albolineatus	N/A
	Metopograpsus messor	N/A
Hippolytidae	Latreutes anoplonyx	camarón medusa
	Latreutes planirostris	camarón romo
Leucosiidae	Philyra syndactyla	N/A
Lithodidae	Lithodes maja	centolla de roca
Macrophthalmide	Macrophthalmus (Macrophthalmus) sulcatus	N/A
Matutidae	Ashtoret miersii	N/A
	Matuta planipes	[flower moon crab]
Menippidae	Menippe rumphii	[maroon stone crab]
Ocypodidae	Gelasimus vocans	[orange fiddler crab]
	Leptuca panacea	[gulf sand fiddler]
	Leptuca spinicarpa	[spined fiddler]
	Minuca longisignalis	[gulf marsh fiddler]
	Minuca minax	[redjointed fiddler]
	Minuca rapax	[mudflat fiddler]
Paguridae	Pagurus angustus	N/A
Palaemonidae	Palaemon gravieri	camarón chino de acequia
	Palaemon macrodactylus	camarón emigrante
	Palaemon pandaliformis	camarón potitinga
	Palaemon pugio	[daggerblade grass shrimp]
	Palaemon sp.	N/A
Parthenopidae	Parthenope prensor	N/A
Pasiphaeidae	Leptochela gracilis	camaroncito cristal
Penaeidae Penaeidae	Artemesia longinaris	camarón estilete argentino
	Metapenaeus affinis	camarón jinga

Familia	Nombre científico	Nombre común
	Metapenaeus brevicornis	camarón amarillo
	Parapenaeopsis stylifera	camarón kidi
	Penaeus californiensis	camarón patiamarillo
	Penaeus penicillatus	camarón rabo colorado
	Penaeus semisulcatus	langostino tigre verde
Portunidae	Callinectes arcuatus	jaiba cuata
	Charybdis (Charybdis) annulata	[banded-legged swimming crab]
	Charybdis (Charybdis) japonica	[Japanese swimming crab]
	Charybdis (Charybdis) lucifer	N/A
	Charybdis (Charybdis) natator	[ridged swimming crab]
	Podophthalmus vigil	[periscope crab]
	Portunus sanguinolentus	[threespot swimming crab]
	Portunus trituberculatus	jaiba gazami
	Thalamita danae	N/A
Sergestidae	Acetes chinensis	camaroncillo mauxia norteño
Sesarmidae	Armases cinereum	[squareback marsh crab]
	Circulium rotundatum	N/A
Solenoceridae	Solenocera crassicornis	[coastal mud shrimp]
Squillidae	Squilla mantis	galera ocelada
Upogebiidae	Austinogebia edulis	N/A
Varunidae	Chhapgarus intermedius	N/A
	Cyrtograpsus angulatus	N/A
	Helice tridens	N/A
	Neohelice granulata	N/A
Xanthidae	Atergatis integerrimus	[red egg crab]
	Demania splendida	N/A
	Liagore rubronaculata	N/A

Durante el proceso de revisión, cuando un documento hacía referencia a otro en el que se hablaba de animales no crustáceos y de su susceptibilidad al virus del síndrome de las manchas blancas, se revisaron esos documentos y la evaluación de los animales no crustáceos se incluyó en la Cuadro 6. Las puntuaciones proporcionadas para las especies no crustáceas se basaron en criterios establecidos específicamente para los crustáceos. Como tales, estas puntuaciones no son necesariamente representativas de la verdadera susceptibilidad de estas especies al virus del síndrome de las manchas blancas. Estas puntuaciones se proporcionan como referencia, ya que algunas de estas especies pueden utilizarse como alimento para crustáceos.

5. Convención de denominación para las especies susceptibles

Los nombres científicos de las especies están armonizados con el Registro Mundial de Especies Marinas (WoRMS) https://www.marinespecies.org/index.php.

Los nombres comunes de las especies están armonizados con FAOTERM (http://www.fao.org/faoterm/collection/faoterm/en/). Cuando los nombres comunes no se encuentran en FAOTERM, las especies se designaron de acuerdo con Fishbase https://www.sealifebase.ca

6. Comentarios sobre los fundamentos y las decisiones tomadas por el grupo ad hoc

El término "no concluyente" se empleó para distinguir las situaciones en las que se proveyó más información que debía haberse evaluado como "no determinada" y en las que el grupo *ad hoc* no pudo concluir que se cumplía el criterio. Cada vez que se utilizó la expresión "no concluyente" en la tabla de evaluación, el grupo *ad hoc* añadió información adicional en una nota de pie de página. En su evaluación final, el grupo *ad hoc* consideró "no concluyente" como "no determinada".

El grupo *ad hoc* acordó que, si bien la situación ideal eran dos trabajos con una puntuación de "1", un único estudio sólido con una puntuación de "1" también era suficiente para concluir la susceptibilidad de una especie en ausencia de pruebas contradictorias. Aun así, se revisaron estudios adicionales para comprobar si existían pruebas de apoyo o contradictorias. Cuando se identificaron documentos adicionales pero que el grupo *ad hoc* no los consideró necesarios para una evaluación exhaustiva porque la especie ya había sido determinada como susceptible por otros estudios, estas referencias sólo se anotaron en la lista de referencias (Sección 7).

El grupo *ad hoc* no estudió los documentos que ya se habían revisado en 2016 a menos que se hiciera referencia a ellos en un documento publicado más recientemente y que se considerara que existían motivos para evaluarlos otra vez. Si un documento se revisó tanto en 2016 como en 2023, el año de evaluación reflejó la evaluación más reciente y se registró como 2023.

7. Artículo 1.5.9. Inclusión de especies susceptibles con un rango taxonómico de género o superior

El grupo *ad hoc* tomó en consideración el Artículo 1.5.9. *Inclusión de especies susceptibles con un rango taxonómico de género o superior* y determinó que podía aplicarse para las especies susceptibles identificadas para la infección por el virus del síndrome de las manchas blancas.

8. Referencias

BANDEIRA, J.T., MORAIS, R.S.M.M., SILVA, R.P.P., MENDES, E.S., SILVA, S.M.B.C. & SANTOS, F.L. (2018). First report of white spot syndrome virus in wild crustaceans and mollusks in the Paraíba River, Brazil. *Aquaculture Research*, **50**, 680-684.

BATEMAN, K.S., MUNRO, J., UGLOW, B., SMALL, H.J. & STENTIFORD, G.D. (2012a). Susceptibility of juvenile European lobster *Homarus gammarus* to shrimp products infected with high and low doses of white spot syndrome virus. *Disease of Aquatic Organisms*, **100**, 169-184.

BATEMAN, K.S., TEW, I., FRENCH, C., HICKS, R.J., MARTIN, P., MUNRO, J. & STENTIFORD, G.D. (2012b). Susceptibility to infection and pathogenicity of white spot disease (WSD) in non-model crustacean host taxa from temperate regions. *Journal of Invertebrate Pathology*, **110**, 340–351.

BAUMGARTNER, W. A., HAWKE, J. P., BOWLES, K., VARNER, P. W. & HASSON, K. W. (2009). Primary diagnosis and surveillance of white spot syndrome virus in wild and farmed crawfish (*Procambarus clarkii, P. zonangulus*) in Louisiana, USA. *Disease of Aquatic Organisms*, **85**, 15–22.

BLAYLOCK R.B., CURRAN S.S. & LOTZ J.M. (2019). White spot syndrome virus (WSSV) in cultured juvenile blue crabs *Callinectes sapidus*: oral versus injection exposure, and feeding frequency effects. *Diseases of Aquatic Organisms*, **133**, 147-156.

CAVALLI, L.S., BATISTA, C.R., NORNBERG, B.F.S., MAYER, F.Q., SEIXAS, F.K., ROMANO, L.A., MARINS, L.F. & ABREU, P.C. (2013). Natural occurrence of white spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus in *Neohelice granulata* crab. *Journal of Invertebrate Pathology*, **114**, 86–88.

CAVALLI, L.S., NORNBERG, B.F.S., NETTO, S.A., POERSCH, L., ROMANO, L.A., MARINS, L.F. & ABREU, P.C. (2010). White spot syndrome virus in wild penaeid shrimp caught in coastal and offshore waters in the southern Atlantic Ocean. *Journal of Fish Diseases*, **33**, 533–536.

CAVALLI, L.S., ROMANO, L.A., MARINS, L.F. & ABREU, P.C. (2011). First Report of white spot syndrome virus in farmed and wild penaeid shrimp from Lagoa Dos Patos Estuary, Southern Brazil. *Brazilian Journal of Microbiology*, **42**, 1176–1179.

- CHANG, P.S., CHEN, H.C. & WANG, Y.C. (1998b) Detection of white spot syndrome associated baculovirus in experimentally infected wild shrimp, crab and lobsters by in situ hybridization. *Aquaculture*, **164**, 233–242.
- CHANG, P.S., CHEN, L.J. & WANG, Y.C. (1998a). The effect of ultraviolet irradiation, heat, pH, ozone, salinity and chemical disinfectants on the infectivity of white spot syndrome baculovirus. *Aquaculture*, **166**, 1–17.
- CHANG, Y.S., CHEN, T.C., LIU, W.J., HWANG, J.S., KOU, G.H. & LO, C.F. (2011). Assessment of the roles of copepod *Apocyclops royi* and bivalve mollusk *Meretrix Iusoria* in white spot syndrome virus transmission. *Marine Biotechnology*, **13**, 909–917.
- CHANG, Y.S., LIU, W.J., CHEN, T.C., CHAN, T.Y., LIU, K.F., CHUANG, J.C., KOU, G.H., LO, C.F. & WANG, H.C. (2012). Feeding hermit crabs to shrimp broodstock increases their risk of WSSV infection. *Disease of Aquatic Organisms*, **98**, 193–199.
- CHAPMAN, R.W., BROWDY, C.L., SAVIN, S., PRIOR, S. & WENNER, E. (2004). Sampling and evaluation of white spot syndrome virus in commercially important Atlantic penaeid shrimp stocks. *Diseases of Aquatic Organisms*, **59**, 179-185
- CHEN, L.L., LO, C.F., CHIU, Y.L., CHANG, C.F. & KOU, G.H. (2000). Natural and experimental infection of white spot syndrome virus (WSSV) in benthic larvae of mud crab *Scylla serrata*. *Disease of Aquatic Organisms*, **40**, 157–161.
- CHOU, H.Y., HUANG, C.Y., LO, C.F. & KOU, G.H. (1998). Studies on transmission of white spot syndrome associated baculovirus (WSBV) in *Penaeus monodon* and *P. japonicus* via waterborne contact and oral ingestion. *Aquaculture*, **164**, 263–276.
- CLARK, K.F., ACORN, A.R. & GREENWOOD, S.J. (2013). A transcriptomic analysis of American lobster (*Homarus americanus*) immune response during infection with the bumper car parasite *Anophryoides haemophila*. *Developmental* & *Comparative Immunology*, **40(2)**, 112-122.
- CORBEL, V., ZUPRIZAL, Z., SHI, C., HUANG, SUMARTONO, ARCIER, J.M. & BONAMI, J.R. (2001). Experimental infection of European crustaceans with white spot syndrome virus (WSSV). *Journal of Fish Diseases*, **24**, 377–382.
- CORRE, V., FAISIN, J., CARTON-KAWAGOSHI, R.J., ELLE, B.J., TRAIFLGAR, R.F. & CAIPANG, C.M. (2012). Evidence of WSSV transmission from the rotifer (*Brachionus plicatilis*) to the black tiger shrimp (*Penaeus mondon*) postlarvae and means to control rotifer resting eggs using industrial disinfectants. *Aquaculture, Aquarium, Conservation & Legislation, International Journal of the Bioflux Society*, **5(1)**, 64-68
- CORTEEL, M., DANTAS-LIMA, J.J., TUAN, V.V., THUONG, K.V., WILLE, M., SANZ, V.A., PENSAERT, M.B., SORGELOOS, P. & NAUWYNCK, H.J. (2012) Susceptibility of juvenile *Macrobrachium rosenbergii* to different doses of high and low virulence strains of white spot syndrome virus (WSSV). *Disease of Aquatic Organisms*, **100**, 211–218.
- CUÉLLAR-ANJEL, J., WHITE-NOBLE, B., SCHOFIELD, P., CHAMORRO, R. & LIGHTNER, D.V. (2012). Report of significant WSSV-resistance in the Pacific white shrimp, *Litopenaeus vannamei*, from a Panamanian breeding program. *Aguaculture*, **368–369**, 36–39.
- DAI Y., WANG Y., ZHAO L., QIN Z., YUAN J., QIN Q., LIN L. & LAN J. (2016). A novel L-type lectin was required for the multiplication of WSSV in red swamp crayfish (*Procambarus clarkii*). Fish & Shellfish Immunology, **2016 Aug**; 55:48-55.
- DING, Z., YAO, Y., ZHANG, F., WAN, J., SUN, M., LIU, H., ZHOU, G., TANG, J., PAN, J., XUEB, H. & ZHAO, Z. (2015). The first detection of white spot syndrome virus in naturally infected cultured Chinese mitten crabs, *Eriocheir sinensis* in China. *Journal of Virological Methods*, **220**, 49–54.
- DU, H., DAI, W., HAN, X., LI, W., XU, Y. & XU, Z. (2008). Effect of low water temperature on viral replication of white spot syndrome virus in *Procambarus clarkii*. *Aquaculture*, **277**, 149–151.

- DUAN, Y., LI, J., ZHANG, Z., LI, J., GE, Q. & LIU, P. (2015). The role of oncoprotein NM23 gene from *Exopalaemon carinicauda* is response to pathogens challenge and ammonia-N stress. *Fish & Shellfish Immunology*, **47**, 1067–1074.
- EDGERTON, B.F. (2004). Susceptibility of the Australian freshwater crayfish *Cherax destructor albidus* to white spot syndrome virus (WSSV). *Disease of Aquatic Organisms*, **59**, 187–193.
- ESRINA, D., ARJITO, S., HADITOMO, A.H.C. & CHILMAWATI, D. (2012). The white spot syndrome virus (WSSV) load in *Dendronereis spp. Journal of Coastal Development*, **15**, 270–275.
- ESRINA, D., VERRETH, J.A.J., PRAYITNO, S.B., ROMBOUT, J.H.W.M., VLAK, J.M. & VERDEGEM, M.C.J. (2013). Replication of white spot syndrome virus (WSSV) in the polychaete *Dendronereis spp. Journal of Invertebrate Pathology*, **114**, 7–10.
- FENG, W.R., ZHANG, M., SU, Y.Q., WANG, J., WANG, Y.T. & MAO, Y. (2014). Identification and analysis of a *Marsupenaeus japonicus* ferritin that is regulated at the transcriptional level by WSSV infection. *Gene*, 544, 184–190.
- FLEGEL, T.W. (2013). Special topic review: major viral diseases of the black tiger prawn (*Penaeus monodon*) in Thailand. *World Journal of Microbiology & Biotechnology*, **13**, 433–442.
- GALAVÍZ-SILVA, L., MOLINA-GARZA, Z.J., ALCOCER-GONZÁLEZ, J.M., ROSALES-ENCINAS, J.L. & IBARRA-GÁMEZ, C. (2004) White spot syndrome virus genetic variants detected in Mexico by a new multiplex PCR method. *Aquaculture*, **242**, 53-68.
- GAO, H., KONG, J., LI, Z., XIAO, G. & MENG, X. (2011). Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp *Fenneropenaeus chinensis* by real-time PCR. *Aquaculture*, **312**, 26–31.
- GAO, M., LI, F., XU, L. & ZHU, X. (2014). White spot syndrome virus strains of different virulence induce distinct immune response in *Cherax quadricarinatus*. Fish & Shellfish Immunology, **39**, 17–23.
- GHOLAMHOSEINI, B., AFSHARNASAB, M. & MOTALLEBI, A.A. (2013). Rate (ROI) and severity (SOI) of infection of white spot disease in cultured and captured penaeid shrimps in the Persian Gulf using histopathology and polymerase chain reaction. *Iranian Journal of Fisheries Sciences*, **12(2)**, 335–347.
- GONG, J., PAN, X., ZHOU, X. & ZHU, F. (2023). Dietary quercetin protects *Cherax quadricarinatus* against white spot syndrome virus infection. *Journal of Invertebrate Pathology*, **198**, 107931.
- GONG, S.J., KIM, Y.J., CHOI, M.R. & KIM, S.K. (2010). Experimental infection for the neutralization of white spot syndrome virus (WSSV) in wild captured sand shrimp, *Crangon affinis*. *Journal of Life Science*, **20(9)**, 1294–1298.
- GOPALAKRISHNAN, A., RAJKUMAR, M., SUN, J., WANG, M. & KUMAR, K.S. (2011). Mud crab, *Scylla tranquebarica* (*Decapoda: Portunidae*), a new host for the white spot syndrome virus. *Aquaculture Research*, **42**, 308-312.
- GUDKOVS, N., MURWANTOKO, M., & WALKER, P.J. (2014). Stability of the WSSV ORF94 VNTR genotype marker during passage in marine shrimp, freshwater crayfish and freshwater prawns. *Disease of Aquatic Organisms*, **111**, 249–257.
- HARYADI, D., VERRETH, J.A.J., VERDEGEM, M.C.J. & VLAK, J.M. (2015). Transmission of white spot syndrome virus (WSSV) from *Dendronereis spp.* (Peters) (*Nereididae*) to penaeid shrimp. *Journal of Fish Diseases*, **38**, 419–428.
- HOSSAIN, M.S, CHAKRABORTY, A., JOSEPH, B., OTTA, S.K., KARUNASAGAR, I. & KARUNASAGAR, I. (2001a). Detection of new hosts for white spot syndrome virus of shrimp using nested polymerase chain reaction. *Aquaculture*, **198**, 1–11.

- HOSSAIN, M.S., OTTA, S.K., KARUNASAGAR, I. & KARUNASAGA, I. (2001b). Detection of white spot syndrome virus (WSSV) in wild capture shrimp and in non-cultured crustaceans from shrimp ponds in Bangladesh by polymerase chain reaction. *Fish Pathology*, **36(2)**, 93–95.
- HUANG, C.H., ZHANG, L.R., ZHANG, J.H., XIAO, L.C., WU, Q.J., CHEN, D.H. & LI, J.K. (2001). Purification and characterization of white spot syndrome virus (WSSV) produced in an alternate host: crayfish, *Cambarus clarkii*. *Virus Research*, **76**, 115–125.
- JANG, I.K., MENG, X.H., SEO, H.C, CHO, Y.R., KIM, B.R., AYYARU, G. & KIM, J.S. (2009). A TaqMan real-time PCR assay for quantifying white spot syndrome virus (WSSV) infections in wild broodstock and hatchery-reared postlarvae of fleshy shrimp, *Fenneropenaeus chinensis*. *Aquaculture*, **287**, 40–45.
- JIRAVANICHPAISAL, P., SÖDERHÄLL, K. & SÖDERHÄLL, I. (2004). Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. *Fish & Shellfish Immunology*, **17**, 265–275.
- JOSEPH, T.C., JAMES, R., RAJAN, L.A., SURENDRAN, P.K. & LALITHA, K.V. (2015). White spot syndrome virus infection: Threat to crustacean biodiversity in Vembanad Lake, India. *Biotechnology Reports*, **7**, 51–54.
- KANCHANAPHUM, P., WONGTEERASUPAYA, C.W., SITIDILOKRATANA, N., BOONSAENG, V.I., PANYIM, S., TASSANAKAJON, A., WITHYACHURNNARNKUL, B. & FLEGEL, T.W. (1998). Experimental transmission of white spot syndrome virus (WSSV) from crabs to shrimp *Penaeus monodon*. *Disease of Aquatic Organisms*, **34**, 1–7.
- KONG, T., LIN, S., GONG, Y., TRAN, N.T., ZHANG, Y., ZHENG, H., MA, H. & LI, S. (2020) Sp-CBL inhibits white spot syndrome virus replication by enhancing apoptosis in mud crab (*Scylla paramamosain*). *Developmental & Comparative Immunology*, **105**, 103580.
- KONO, T., SAVAN, R., SAKAI, M. & ITAMI, T. (2004) Detection of white spot syndrome virus in shrimp by loop-mediated isothermal amplification. *Journal of Virological Methods*, **115**, 59-65.
- KOU, G.H., PENG, S.E., CHIU, Y.L & LO, C.F. (1998). Tissue distribution of white spot syndrome virus (WSSV) in shrimp and crabs. *Advances in Shrimp Biotechnology*. National Center for Genetic Engineering and Biotechnology, Bangkok, 267–271.
- LIGHTNER, D.V., HASSON, K.W., WHITE, B.L. & REDMAN, R.M. (1998). Experimental infection of western hemisphere penaeid shrimp with Asian white spot syndrome virus and Asian yellow head virus. *Journal of Aquatic Animal Health*, **10**, 271–281.
- LIU, W., QIAN, D. & YAN, X. (2011b). Proteomic analysis of differentially expressed proteins in hemolymph of *Scylla serrata* response to white spot syndrome virus infection. *Aquaculture*, **314**, 53–57.
- LIU, W., QIAN, D. & YAN, X.J. (2011a). Studies on pathogenicity and prevalence of white spot syndrome virus in mud crab, *Scylla serrata* (Forskal), in Zhejiang Province, China. *Journal of Fish Diseases*, **34**, 131–138.
- LO, C.F., LEU, G.H., HO, C.H., CHEN, C.H., PENG, S.E., CHEN, Y.T., CHOU, C.M., YEH, P.Y., HUANG, C.J., CHOU, H.Y., WANG, C.H. & KOU, G.H. (1996b). Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. *Disease of Aquatic Organisms*, **25**, 133–141.
- LO, C.F., HO, PENG, C.H., CHEN, S.E., HSU, C.H., YA-LIN CHIU, H.C., CHANG, C.F., LIU, K.F., SU, M.S., WANG, C.H. & KOU, G.H. (1996a). White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. *Disease of Aquatic Organisms*, **27**, 215—225.
- LO, C.F., HSU, H.C., TSAI, M.F., HO, C.H., PENG, S.E., KOU, G.H. & LIGHTNER, D.V. (1999). Specific genomic DNA fragment analysis of different geographical clinical samples of shrimp white spot syndrome virus. *Disease of Aquatic Organisms*, **35**, 175–185.
- MACÍAS-RODRÍGUEZ, N.A., MAÑÓN-RÍOS, N., ROMERO-ROMERO, J.L., CAMACHO-BELTRÁN, E., MAGALLANES-TAPIA, M.A., LEYVA-LÓPEZ, N.E., HERNÁNDEZ-LÓPEZ, J., MAGALLÓN BARAJAS, F.J., PEREZ-ENRIQUEZ, R., SÁNCHEZ-GONZÁLEZ, S. & MÉNDEZ-LOZANO, J. (2014). Prevalence of viral

pathogens WSSV and IHHNV in wild organisms at the Pacific Coast of Mexico. *Journal of Invertebrate Pathology*, **116**, 8–12.

MARQUES, J.S., MÜLLER, I.C., MOSER, J.R., SINCERO, T.C & MARQUES, M.R.F. (2011). Wild captured crab, *Chasmagnathus granulata* (Dana, 1851), a new host for white spot syndrome virus (WSSV). *Aquaculture*, **318**, 20–24.

MARTORELLI, S.R., OVERSTREET, R.M. & JOVONOVICH, J.A. (2010). First report of viral pathogens WSSV and IHHNV in Argentine crustaceans. *Bulletin of Marine Science*, **86(1)**, 117–131.

MENDOZA-CANO, F., SÁNCHEZ-PAZ, A., TERÁN-DÍAZ, B., GALVÁN-ALVAREZ, D., ENCINAS-GARCÍA, T., ENRÍQUEZ-ESPINOZA, T., & HERNÁNDEZ-LÓPEZ, J. (2014). The endemic copepod *Calanus pacificus californicus* as a potential vector of white spot syndrome virus. *Journal of Aquatic Animal Health*, **26**, 113–117.

MENG, X.H., JANG, I.K., SEO, H.C. & CHO, Y.R. (2009). White spot syndrome virus quantification in blue crab *Portunus trituberculatus* hatchery-produced larvae and wild populations by TaqMan real-time PCR, with an emphasis on the relationship between viral infection and crab health. *Aquaculture*, **291**, 18–22.

MOODY, N.J.G., MOHR, P.G., WILLIAMS, L.M., CUMMINS, D.M., HOAD, J., SLATER, J., VALDETER, S.T., COLLING, A., SINGANALLUR, N.B., GARNDER, I.A., GUDKOVS, N. & CRANE, M.S.J. (2022). Performance characteristics of two real-time TaqMan polymerase chain reaction assays for the detection of WSSV in clinically diseased and apparently healthy prawns. *Diseases of Aquatic Organisms*, https://www.int-res.com/prepress/d03687.html.

MUHAMMAD, M. & LOTZ, J.M. (2015). Prevalence and Infectivity of white spot syndrome virus in the Daggerblad Grass Shrimp *Palaemonetes pugio*. *World Aquaculture* 2015. At Jeju, South Korea.

MUHAMMAD, M., LOTZ, J.M., BLAYLOCK, R.B. & CURRAN, S.S. (2020). White spot syndrome virus in decapods from Mississippi Sound, USA, and susceptibility of *Palaemonetes pugio* and *Uca panacea* to a Chinese isolate. *Diseases of Aquatic Organisms*, **138**,121-131.

NUNAN, L.M. &LIGHTNER, D.V. (1997). Development of a non-radioactive gene probe by PCR for detection of white spot syndrome virus (WSSV). *Journal of Virological Methods*, **63**, 192-201.

OTTA, K., SHUBHA, G., JOSEPH, B., CHAKRABORTY, A., KARUNASAGAR, I. & KARUNASAGAR, I. (1999). Polymerase chain reaction (PCR) detection of white spot syndrome virus (WSSV) in cultured and wild crustaceans in India. *Disease of Aquatic Organisms*, **38**, 67–70.

OVERSTREET, R.M., JOVONOVICH, J. & MA, H. (2009). Parasitic crustaceans as vectors of viruses with an emphasis on three penaeid viruses. *Integrative and Comparative Biology*, **49(2)**, 127–141.

POWELL, J.W.B., BROWDY, C.L. & BURGE, E.J. (2015). Blue crabs *Callinectes sapidus* as potential biological reservoirs for white spot syndrome virus (WSSV). *Diseases of Aquatic Organisms*, **113**, 163-167.

RAJ, N.S., NATHIGA NAMBI, K.S., ABDUL MAJEED, S., TAJU, G., VIMAL, S., FAROOK, M.A. & SAHUL HAMEED, A.S. (2012). High efficacy of white spot syndrome virus replication in tissues of freshwater rice-field crab, *Paratelphusa hydrodomous* (Herbst). *Journal of Fish Diseases*, **35**, 917–925.

RAJAN, P.R., RAMASAMY, P., PURUSHOTHAMAN, V. & BRENNAN, G.P. (2000). White spot baculovirus syndrome in the Indian shrimp *Penaeus monodon* and *P. indicus. Aquaculture*, **184**, 31–44.

RAJENDRAN, K.V., VIJAYAN, K.K., SANTIAGO, T.C. & KROL, R.M. (1999). Experimental host range and histopathology of white spot syndrome virus (WSSV) infection in shrimp, prawns, crabs and lobsters from India. *Journal of Fish Diseases*, **22**, 183–191.

RAMIREZ-DOURIET, C., DE SILVA-DAVILA, R., MENDEZ-LOZANA, J., ESCOBEDO-URIAS, D., LEYVA-ARANA, I. & LOPEZ-MEYER, M. (2005). White spot syndrome virus detection in zooplankton of coastal lagoons and shrimp commercial ponds in Sinaloa, Mexico. *135th Annual Meeting of the American Fisheries Society*. Anchorage, Alaska.

- ROSS, E.P., BEHRINGER, D.C. & BOJKO, J. (2019). White spot syndrome virus and the Caribbean spiny lobster, *Panulirus argus*: susceptibility and behavioural immunity. *Journal of Invertebrate Pathology*, **162**, 1-9.
- SAHUL HAMEED, A.S., BALASUBRAMANIAN, G., MUSTHAQ, S.S. & YOGANANDHAN, K. (2003). Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV). *Disease of Aquatic Organisms*, **57**, 157–161.
- SAHUL HAMEED, A.S., CHARLES, M.X. & ANILKUMAR, M. (2000). Tolerance of *Macrobrachium rosenbergii* to white spot syndrome virus. *Aquaculture*, **183**, 207–213.
- SAHUL HAMEED, A.S., YOGANANDHAN, K., SATHISH, S., RASHEED, M., MURUGAN, V. & JAYARAMAN, K. (2001). White spot syndrome virus (WSSV) in two species of freshwater crabs (*Paratelphusa hydrodomous* and *P. pulvinata*). *Aquaculture*, **201**, 179–186.
- SÁNCHEZ-PAZ, A., TERÁN-DÍAZ, B., ENRÍQUEZ-ESPINOZA, T., ENCINAS-GARCIA, T., VÁZQUEZ-SÁNCHEZ, I. & MENDOZA-CANO, F. (2015). The tidepool shrimp, *Palaemon ritteri* Holmes, constitutes a novel host to the white spot syndrome virus. *Journal of Fish Diseases*, **38(7)**, 613–620.
- SARAVANAN, K., KUMAR, P.P., PRAVEENRAJ, J., BARUAH, A, SIVARAMAKRISHNAN, T., KUMAR, T.S., KUMAR, S.P., SANKAR, R.K., ROY, S.D. (2017). Investigation and confirmation of white spot syndrome virus (WSSV) infection in wild caught penaeid shrimps of Andaman and Nicobar Islands, India. *Virus Disease*, **28(4)**, 368-372.
- SOMBOONNA, N., MANGKALANAN, S., UDOMPETCHARAPORN, A., KRITTANAI, C., SRITUNYALUCKSANA, K. & FLEGEL, T.W. (2010). Mud crab susceptibility to disease from white spot syndrome virus is species-dependent. *BMC Research Notes*, **3**, 315.
- SOOWANNAYAN, C. & PHANTHURA, M. (2011). Horizontal transmission of white spot syndrome virus (WSSV) between red claw crayfish (*Cherax quadricarinatus*) and the giant tiger shrimp (*Penaeus monodon*). *Aquaculture*, **319**, 5–10.
- SUPAMATTAYA, K., HOFFMAN, R.W., BOONYARATPALIN, S. & KANCHANAPHUM, P. (1998). Experimental transmission of white spot syndrome virus (WSSV) from black tiger shrimp *Penaeus monodon* to the sand crab *Portunus pelagicus*, mud crab *Scylla serrata* and krill *Acetes sp. Disease of Aquatic Organisms*, **32**, 79–85.
- TAKAHASHI, Y., FUKUDA, K., KONDO, M., CHONGTHALEONG, A., NISHI, K., NISHIMURA, M., OGATA, K., SHINYA, I., TAKISE, K., FUJISHIMA, Y. & MATSUMAURA, M. (2003). Detection and prevention of WSSV infection in cultured shrimp. *Asian Aquaculture Magazine November* 2003, 25–27.
- TANG, K.F.J., NAVARRO, S.A., PANTOJA, C.R., ARANGUREN, F.L. & LIGHTNER, D.V. (2012). New genotypes of white spot syndrome virus (WSSV) and *Taura syndrome virus* (TSV) from the Kingdom of Saudi Arabia. *Disease of Aquatic Organisms*, **99**, 179–185.
- UNZUETA-BUSTAMANTE, M., SILVEIRA-COFFICNY, R., PRIETO, A., AGUIRRE-GUZMÁN, G. & VÁZQUEZ-JUÁREZ, R. (2004). Susceptibility of *Litopenaeus schmitti* and *Cherax quadricarinatus* to white spot syndrome virus (WSSV). *Ciencias Marinas*, **30(4)**, 537-545.
- VAZQUEZ-BOUCARD, C., ALVAREZ-RUIZ, P., ESCOBEDO-FREGOSO, C., ANGUIANO-VEGA, G., DE JESUS DURAN-AVELAR, M., PINTO, V.P. & ECOBEDO-BONILLA, C.M. (2010). Detection of white spot syndrome virus (WSSV) in Pacific oyster *Crassostrea gigas*. *Journal of Invertebrate Pathology*, **104**, 245-247.
- VIJAYA, K.K., RAJ, V.R., BALASUBRAMANIAN, C.P., ALVANDI, S.V., SEKHAR, V.T. & SANTIAGO, T.C. (2005). Polychaete worms a vector for white spot syndrome virus (WSSV). *Diseases of Aquatic Organisms*, **63**, 107-111.
- WANG, C.S., TSAI, Y.J. & CHEN, S.N. (1998b). Detection of white spot disease virus (WSDV) infection in shrimp using in situ hybridization. *Journal of Invertebrate Pathology*, **72**, 170–173.

- WANG, Y.C., LO, C.F., CHANG, P.S. & KOU, G.H. (1998a). Experimental infection of white spot baculovirus in some cultured and wild decapods in Taiwan. *Aquaculture*, **164**, 221–231.
- WANG, Y.G., HASSAN, M.D., SHARIFF, M., ZAMRI, S.M. & CHEN, X. (1999). Histopathology and cytopathology of white spot syndrome virus (WSSV) in cultured *Penaeus monodon* from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation. *Diseases of Aquatic Organisms*, **39(1)**, 1-11.
- WANG, Y.T., LIU, W., SEAH, J.N., LAM, C.S., XIANG, J.H., KORZH, V. & KWANG, J. (2002). White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp *Penaeus merguiensis*. *Disease of Aquatic Organisms*, **52**, 249–259.
- XU, T., SHAN, X., LI, Y., YANG, T., TENG, G., WU, Q., WANG, C., TANG, K.F.J., ZHANG, Q. & JIN, X. (2021). White spot syndrome virus (WSSV) prevalence in wild crustaceans in the Bohai Sea. *Aquaculture*, **542**, 736810.
- XU, W.J., SHENG, X.Z., SHI, H., WANG, Z.F. & HU, Z.H. (2007). Artificial infection for *Portunus trituberculatus* with WSSV and histopathological observation. *Journal of Shanghai Fisheries University*, **16(1)**, 33–39.
- XUE, R., ZHANG, Q., WEI, Y., ZHU, Y., ZHOU, X., CAO, G. & GONG, C. (2012). Sequential method for rapid early diagnosis of white spot syndrome virus in crayfish. *African Journal of Biotechnology*, **11(58)**, 12232–12239.
- YAN, D.C., DONG, S.L., HUANG, J., YU, X.M. & FENG, M.Y. (2004). White spot syndrome virus (WSSV) detected by PCR in rotifers and rotifer resting eggs from shrimp pond sediments. *Disease of Aquatic Organisms*, **59**, 69–73.
- YOU, X.X., SU, Y.Q., MAO, Y., LIU, M., WANG, J., ZHANG, M. & WU, C. (2010). Effect of high water temperature on mortality, immune response and viral replication of WSSV-infected *Marsupenaeus japonicus* juveniles and adults. *Aquaculture*, **305**, 133–137.
- YUN, J.M., KIM, B.S., HWANG, S.M., KIM, Y.B., CHOI, W.B. & CHOI, T.J. (2014). Artificial infection of the Korean freshwater prawn *Macrobrachium nipponense* (DE HAAN, 1849) (*Decapoda, Palaemonidae*) with white spot syndrome virus (WSSV). *Crustaceana*, **87** (7), 866–880.
- ZHAN, W.B., WANG, Y.H., FRYER, J.L., YU, K.K., FUKUDA, H. & MENG, Q.X. (1998). White syndrome virus infection of cultured shrimp in China. *Journal of Aquatic Animal Health*, **10**, 405–410.
- ZHANG, J.S., DONG, S.L., DONG, Y.W., TIAN, X.L. & HOU, C.Q. (2008). Bioassay evidence for the transmission of WSSV by the harpacticoid copepod *Nitocra sp. Journal of Invertebrate Pathology*, **97**, 33–39.
- ZHANG, J-S., DONG, S-L., DONG, Y-W., TIAN, X-L., CAO, Y-C., LI, X-J. & YAN, D-C. (2010). Assessment of the role of brine shrimp *Artemia* in white spot syndrome virus (WSSV) transmission. *Veterinary Research Communications*, **34**, 25-32.
- ZHU, F., TWAN, W-H., TSENG, L-C., PENG, S-H. & HWANG, J-S. (2019). First detection of white spot syndrome virus (WSSV) in the mud shrimp *Austinogebia edulis* in Taiwan. *Scientific Reports*, **9**, 18572.

Otras referencias revisadas por el grupo ad hoc, pero no referenciadas en el informe anterior:

- AMANO, Y., DIAZ C.L. & MELENA, C.J. (2011) Fine structure analysis of white spot syndrome virus of shrimp. *Brazilian Journal of Veterinary Pathology*, **4(3)**, 214-218.
- CHEN C, SHEN J-L., LIANG C-S., SUN Z-C. & JIANG H-F. (2022). First discovery of beta-sitosterol as a novel antiviral agent against white spot syndrome virus. *International Journal of Molecular Sciences*, **23(18)**,10448.
- CHOU, H-Y., HUANG, C-Y., WANG, C-H., CHIANG, H-C., & LO, C-F. (1995). Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. *Diseases of Aquatic Organisms*, **23**, 165-173.

- CUI, C., LIANG, Q., TANG, X., XING, J., SHENG, X.& ZHAN, W. (2020). Differential apoptotic responses of hemocyte subpopulations to white spot syndrome virus infection in *Fenneropenaeus chinensis*. *Frontiers in Immunology*, **55**, 48-55.
- CUI, C., ZHU, L., TANG, X., XING, J., SHENG, X., CHI, H. & ZHAN, W. (2021). Differential white spot syndrome virus-binding proteins in two hemocyte subpopulations of Chinese shrimp (*Fenneropenaeus chinensis*). *Developmental & Comparative Immunology*, **125**, 104215.
- DESRINA, PRAYITNO S.B., VERDEGEM M.C.J., VERRETH J.A.J. & VLAK J.M. (2021). White spot syndrome virus host range and impact on transmission. *Reviews in Aquaculture*, **14**, 1843-1860.
- DESRINA, VERRETH, J.A.J., PRAYITNO, S.B., ROMBOUT, J.H.W.M., VLAK, J.M. & VEREDEGEM, M.C.J. (2013). Replication of white spot syndrome virus (WSSV) in the polychaete *Dendronereis spp. Journal of Invertebrate Pathology*, **114**, 7-10.
- DING, Z., YAO, Y., ZHANG, F., WAN, J., SUN, M., LIU, H., ZHOU, G., TANG, J., PAN, J., XUE, H. & ZHAO, Z. (2015). The first detection of white spot syndrome virus in naturally infected cultured Chinese mitten crabs, *Eriocheir sinensis* in China. *Journal of Virological Methods*, **220**, 49-54.
- GHOLAMHOSSEINI A., MOHAMMADI A., AKBARI S. & BANAEE M. (2020). Molecular, histopathologic and electron microscopic analysis of white spot syndrome virus in wild shrimp (*Fenneropenaeus indicus*) in the coastal waters of Iran. *Archives of Virology*, **165**, 1433-1440.
- HERNÁNDEZ-MONTIEL, Á., GIFFARD-MENA, I., WEIDMANN, M., BEKAERT, M., ULRICH, K. & BENKAROUN, J. (2022). Virulence and genetic differences among white spot syndrome virus isolates inoculated in *Penaeus vannamei*. *Diseases of Aquatic Organisms*, **152**, 85-98.
- HONG, P-P., LI, C., NIU, G-J., ZHAO, X-F & WANG, J-X. (2022). White spot syndrome virus directly activates mTORC1 signalling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp. *PLoS Pathogens*, **8(9)**, e1010808.
- HUNG-YUN LIN, JOHN HAN-YOU LIN, HAN-JIA LIN & LI-LI CHEN. (2022). Inhibition of white spot syndrome virus (WSSV) in Pacific white shrimp (*Litopenaeus vannamei*) using polyamine-modified carbon quantum dots. *Methods in Molecular Biology*, **2610**, 67-73.
- JIANG, L., XIAO, J., LIU, L., PAN, Y., YAN, S. & WANG, Y. (2017). Characterization and prevalence of a novel white spot syndrome viral genotype in naturally infected wild crayfish, *Procambarus clarkii*, in Shanghai, China. *Virus Disease*, **28(3)**, 250-261.
- KIM, M.J., BAEK, E., KIM, J-O., HWANG, J., KWON, M. & KIM, K. (2022). Application of iron flocculation to concentrate white spot syndrome virus in seawater. *Journal of Virological Methods*, **306**, 114554.
- LEI, Z.W., HUANG J., SHI, C.Y., ZHANG, L.J. & YU, K.K. (2002). Investigation into the hosts of white spot syndrome virus (WSSV). *Oceanologia et Limnologia Sinica*, **33(3)**, 250–258.
- LILLEHAMMER, M., BANGERA, R., SALAZAR, M., VELA, S., ERAZO, E.C., SUAREZ, A., COCK, J., RYE, M. & ROBINSON, N.A. (2020). Genomic selection for white spot syndrome virus resistance in whiteleg shrimp boosts survival under an experimental challenge test. *Scientific Reports*, **10(1)**, 20571.
- MAEDA, M., ITAMI, T., MIZUKI, E., TANAKA, R., YOSHIZU, Y., DOI, K., YASUNAGA-AOKI, C., TAKAHASHI, Y. & KAWARABATA, T. (2000). Red swamp crawfish (*Procambarus clarkii*): an alternative experimental host in the study of white spot syndrome virus. *Acta Virologica*, **44(6)**, 371-4.
- MENG, C., LIU, L-K., LI, D-L., GAO, R-L., FAN, W-W., WANG, K-J., WANG, H-C. & LIUA, H-P. (2020). White spot syndrome virus benefits from endosomal trafficking, substantially facilitated by a valosin-containing protein, to escape autophagic elimination and propagate in the crustacean *Cherax quadricarinatus*. *Journal of Virology*, **95**, e01570-20.

- MILLARD, R.S., BICKLEY, L.K., BATEMAN, K.S., VERBRUGGEN, B., FARBOS, A., LANGE, A., MOORE, K.A., STENTIFORD, G.D., TYLER, C.R., VAN AERLE, R. & SANTOS, E.M. (2022). Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses. *Frontiers in Immunology*, **13**, 1057421.
- NG, Y.S., LEE, D-Y., LIU, C-H., TUNG, C-Y., HE, S-T. & WANG, H-C. (2022). White spot syndrome virus triggers a glycolytic pathway in shrimp immune cells (hemocytes) to benefit its replication. *Frontiers in Immunology*, **13**, 901111.
- NGO, T.T.N., SENIOR, A.M., CULINA, A., SANTOS, E.S.A., VLAK, J.M. & ZWART, M.P. (2018). Quantitative analysis of the dose-response of white spot syndrome virus in shrimp. *Journal of Fish Diseases*, **41(11)**, 1733-1744.
- NIU, G-J., YAN, M., LI, C., LU, P-Y., YU, Z. & WANG, J-X. (2022). Infection with white spot syndrome virus affects the microbiota in the stomachs and intestines of kuruma shrimp. *Science of the Total Environment*, **839**, 156233.
- ONIHARY A.M., RAZANAJATOVO I.M., RABETAFIKA L., BASTARAUD A., HERAUD J.M. & RASOLOFO V. (2021). Genotype diversity and spread of white spot syndrome virus (WSSV) in Madagascar (2012-2016). *Viruses*, **13(9)**, 1713.
- PARK, S.C., CHOI, S.K., HAN, S.H., PARK, S., JEON, H.J., LEE, S.C., KIM, K.Y., LEE, Y.S., KIM, J.H.& HAN, J.E. (2020). Detection of infectious hypodermal and hematopoietic necrosis virus and white spot syndrome virus in whiteleg shrimp (*Penaeus vannamei*) imported from Vietnam to South Korea. *Journal of Veterinary Science*, **21(2)**, e31.
- PENG, S-E., LO, C-F., LIU, K-F. & KOU, G-H. (1998). The transition from pre-patent to patent infection of white spot syndrome virus (WSSV) in *Penaeus monodon* triggered by pereiopod excision. *Fish Pathology*, **33(4)**, 395-400.
- SAHUL HAMEED, A.S., MURTHI, B.L.M., RASHEED, M., SATHISH, S., YOGANANDHAN, K., MURUGAN, V. & JAYARAMAN, K. (2002). An investigation of Artemia as a possible vector for white spot syndrome virus (WSSV) transmission to *Penaeus indicus*. *Aquaculture*, **204**, 1-10.
- SANNIGRAHI, S., ARUMUGASAMY, S.K., MATHIYARASU, J., SUDHAKARAN, R. & SUTHINDHIRAN, K. (2021). Detection of white spot syndrome virus in seafood samples using a magnetosome-based impedimetric biosensor. *Archives of Virology*, **166**, 2763-2778.
- SHAN, L.P., ZHANG, X., HU, Y., LIU, L. & CHEN, J. (2021). Antiviral activity of esculin against white spot syndrome virus: A new starting point for prevention and control of white spot disease outbreaks in shrimp seedling culture. *Journal of Fish Diseases*, **45(1)**, 59-68.
- SHI, Z., HUANG, C., ZHANG, J., CHEN, D. & BONAMI, J.R. (2000). White spot syndrome virus (WSSV) experimental infection of the freshwater crayfish, *Cherax quadricarinatus*. *Journal of Fish Diseases*, **23**, 285-288.
- SURYAKODI, S., AHMED, A.N., BADHUSHA, A., KUMAR, S.S., SIVAKUMAR, S., MAJEED, S.A., TAJU, G., RAHAMATHULLA, S. & HAMEED, A.S.S. (2022). First report on the occurrence of white spot syndrome virus, infectious myonecrosis virus and *Enterocytozoon hepatopenaeiin enaeus vannamei* reared in freshwater systems. *Journal of Fish Diseases*, **45(5)**, 699-706.
- TRAN, N.T., LIANG, H., ZHANG, M., BAKKY, M.A.H., ZHANG, Y. & LI, S. (2022). Role of cellular receptors in the innate immune system of crustaceans in response to white spot syndrome virus. *Viruses*, **14(4)**, 743.
- TRIBAMRUNG, N., BUNNOY, A., CHUCHIRD, N. & SRISAPOOME, P. (2023). The first description of the blue swimming crab (*Portunus pelagicus*) transcriptome and immunological defence mechanism in response

- to white spot syndrome virus (WSSV). Fish & Shellfish Immunology, 134, https://doi.org/10.1016/j.fsi.2023.108626
- WANG, Q., WHITE, B.L., REDMAN, R.M. & LIGHTNER, D.V. (1999). Per os challenge of *Litopenaeus vannamei* postlarvae and *Farfantepenaeus duorarum* juveniles with six geographic isolates of white spot syndrome virus. *Aguaculture*, **170**, 179-194.
- WANG, S., LI, H., WENG, S., LI, C. & HE, J. (2020). White spot syndrome virus establishes a novel IE1/JNK/c-Jun positive feedback loop to drive replication. *iScience*, **23(1)**, 100752.
- WANG, X., CHEN, C., ZHANG, N., CHEN, Q., ZHANG, F., LIU, X., LI, F., SHI, Z-L., VLAK, J.M., WANG, M. & HU, Z. 2022 Functional peroral infectivity complex of white spot syndrome virus of shrimp. *Journal of Virology*, 96(24), e0117322.
- WEERACHATYANUKUL, W., CHOTWIWATTHANAKUN, C. & JARIYAPONG, P. (2021). Dual VP28 and VP37 dsRNA encapsulation in IHHNV virus-like particles enhances shrimp protection against white spot syndrome virus. *Fish & Shellfish Immunology*, **113**, 89-95.
- WEI, H.Y., HUANG, S., YAO, T., GAO, F., JIANG, J.Z. & WANG, J.Y. (2018). Detection of viruses in abalone tissue using metagenomics technology. *Aquaculture Research*, DOI: 10.1111/are.13731
- XIAO, B., FU, Q., NIU, S., ZHU, P., HE, J., & LI, C. (2020). Penaeidins restrict white spot syndrome virus infection by antagonizing the envelope proteins to block viral entry. *Emerging Microbes & Infections*, **9**, https://doi.org/10.1080/22221751.2020.1729068
- YANG, G., WANG, J., LUO, T. & ZHANG, X. (2019). White spot syndrome virus infection activates Caspase 1-mediated cell death in crustacean. *Virology*, **528**, 37-47.
- ZHANG, K., KOIWAI, K., KONDO, H. & HIRONO, I. (2018). White spot syndrome virus (WSSV) suppresses penaeidin expression in *Marsupenaeus japonicus* hemocytes. *Fish & Shellfish Immunology*, **78**, 233-237.
- ZHANG, K., KOIWAI, K., KONDO, H. & HIRONO, I. (2018). A novel white spot syndrome virus-induced gene (MjVIG1) from *Marsupenaeus japonicus* hemocytes. *Fish & Shellfish Immunology*, **77**, 46-52.
- ZHANG, Y., WEN, J., XU, Y., WANG, H., LU, L., SONG, R. & ZOU, J. (2021). Epigallocatechin-3- gallate inhibits replication of white spot syndrome virus in the freshwater crayfish *Procambarus clarkii*. *Journal of Fish Diseases*, **45(3)**, 445-450.
- ZHAO, C., FU, H., SUN, S., QIAO, H., ZHANG, W., JIN, S., JIANG, S., XIONG, Y. & GONG, Y. (2017). Experimental inoculation of oriental river prawn *Macrobrachium nipponense* with white spot syndrome virus (WSSV). *Diseases of Aquatic Organisms*, **126(2)**, 125-134.
- ZHOU, X., GONG, J., ZHUANG, Y. & ZHU, F. (2022). Coumarin protects *Cherax quadricarinatus* (red claw crayfish) against white spot syndrome virus infection. *Fish & Shellfish Immunology*, **127**, 74-81.

.../Anexos

Anexo 1. Lista de participantes de la evaluación de 2023

REUNIÓN DEL GRUPO *AD HOC* DE LA OMSA SOBRE LA SUSCEPTIBILIDAD DE LAS ESPECIES DE CRUSTÁCEOS A LA INFECCIÓN POR LAS ENFERMEDADES DE LA LISTA DE LA OMSA

14, 21 y 23 de marzo 2023 (reunión virtual)

Lista de participantes

MIEMBROS DEL GRUPO AD HOC

Dr. Mark Crane (Presidente)CSIRO Honorary Fellow Australian Centre for Disease Preparedness (ACDP) CSIRO

Geelong, AUSTRALIA

Dr. Arun Dhar

Professor and Director of Aquaculture Pathology Laboratory School of Animal & Comparative Biomedical Sciences University of Arizona Tucson, ESTADOS UNIDOS DE AMÉRICA

Dra. Kelly Bateman

Crustacean Health Theme Lead Centre for Environment, Fisheries and Aquaculture Science (CEFAS) Dorchester, REINO UNIDO

Dr. Jorge Cuéllar-Anjel

International Consultancy on Aquatic Animal Health Bogotá, COLOMBIA

SEDE DE LA OMSA

Dra. Kathleen Frisch

Coordinadora Científica para los Animales Acuáticos Departamento de Normas

Dra. Patricia Kelly

Coordinadora Científica para los Animales Acuáticos Departamento de Normas

Anexo 2. Mandato de la evaluación de 2023

REUNIÓN DEL GRUPO *AD HOC* DE LA OMSA SOBRE LA SUSCEPTIBILIDAD DE LAS ESPECIES DE CRUSTÁCEOS A LA INFECCIÓN POR LAS ENFERMEDADES DE LA LISTA DE LA OMSA

Reunión virtual, noviembre de 2023

Mandato

Contexto

El Capítulo 1.5. Criterios para la inclusión de especies susceptibles de infección por un agente patógeno específico se introdujo en la edición 2014 del Código Acuático. La finalidad de este capítulo es presentar los criterios que permitan determinar las especies hospedadoras que se incluyen en la lista de especies susceptibles en el Artículo X.X.2. de cada capítulo específico de enfermedad en el Código Acuático.

Las evaluaciones de todas las enfermedades de la lista de la OMSA estarán a cargo, progresivamente, de los grupos *ad hoc.* Una vez finalizada, la lista revisada de las especies susceptibles en el Artículo X.X.2. del *Código Acuático* se difundirá para comentario de los Miembros y su posterior adopción.

En el caso de las especies en las que existe alguna evidencia de susceptibilidad, pero que resulta insuficiente para demostrar la susceptibilidad, la información se incluirá en el capítulo específico de enfermedad del *Manual Acuático*.

El Grupo *ad hoc* sobre la susceptibilidad de las especies de crustáceos a la infección por las enfermedades de la lista de la OMSA completó las evaluaciones para la infección por el virus del síndrome de las manchas blancas en junio de 2016; sin embargo, existen nuevas pruebas científicas que deberán evaluarse.

Finalidad

El Grupo *ad hoc* sobre susceptibilidad de las especies de crustáceos a la infección por las enfermedades de la lista de la OMSA llevará a cabo reevaluaciones para la infección por el virus del síndrome de las manchas blancas en crustáceos utilizando las nuevas pruebas científicas disponibles desde las evaluaciones de junio de 2016.

Mandato

- 1) Revisar la literatura pertinente que documenta la susceptibilidad de las especies a la infección por el virus del síndrome de las manchas blancas y aplicar a potenciales especies hospedadoras los criterios detallados en el Capítulo 1.5. Criterios para la inclusión de especies susceptibles de infección por un agente patógeno específico.
- 2) Determinar las especies susceptibles a la infección por el virus del síndrome de las manchas blancas en base al Artículo 1.5.7.
- 3) Determinar las especies con evidencia incompleta de susceptibilidad a la infección por el virus del síndrome de las manchas blancas en base al Artículo 1.5.8.

Resultados esperados del grupo ad hoc

- 1) Proponer una lista de especies susceptibles para su inclusión en el Artículo 9.9.2. del Capítulo 9.9. *Infección por el virus del síndrome de las manchas blancas* del Código Acuático.
- 2) Proponer una lista de las especies con evidencia incompleta de susceptibilidad para su inclusión en la Sección 2.2.2. del Capítulo 2.2.8. *Infección por el virus del síndrome de las manchas blancas* del *Manual Acuático*.
- Redactar un proyecto de informe para consideración de la Comisión para los Animales Acuáticos en su reunión de febrero de 2024.

Anexo 3. Lista de participantes de la evaluación de 2016

REUNIÓN DEL GRUPO *AD HOC* DE LA OMSA SOBRE LA SUSCEPTIBILIDAD DE LAS ESPECIES DE CRUSTÁCEOS A LA INFECCIÓN POR LAS ENFERMEDADES DE LA LISTA DE LA OMSA

París, 1-3 de junio de 2016

Lista de participantes

* Se debe tener en cuenta que los títulos y funciones de los participantes reflejan la información registrada en el momento de la evaluación en 2016 y pueden no indicar la información actual, en 2023.

MIEMBROS DEL GRUPO AD HOC

Dr. Grant D. Stentiford (Presidente)

Director, European Union
Reference Laboratory for
Crustacean Diseases
Team Leader, Pathology and
Molecular Systematics
Centre for Environment, Fisheries
and Aquaculture Science (Cefas)
REINO UNIDO

Dr. Mark Crane

Senior Principal Research Scientist Research Group Leader, AAHL Fish Diseases Laboratory AUSTRALIA

Dra. Sophie St-Hilaire

Department of Health Management Atlantic Veterinary College University of Prince Edward Island CANADÁ

Dr. Temdoung Somsiri

Consultant TAILANDIA

Dr. Jorge Cuéllar-Anjel

Director of Shrimp Pathology and Research Department PANAMÁ

SEDE DE LA OMSA

Dra. Gillian Mylrea

Jefa adjunta del Departamento de Comercio Internacional

Dr. Gowoon Jung

Becario
Departamento de Comercio
Internacional