

## Prevention of sylvatic human rabies with massive rabies prophylaxis

Ana Maria Navarro<sup>1</sup>, Sergio E. Recuenco<sup>2</sup>, \*, Adan Monsalve<sup>3</sup>, Luis Daza<sup>3</sup>, Oswaldo Cabanillas<sup>1</sup>

1 Zoonosis Strategy Department, Ministry of Health of Peru, Lima, Peru; 2 National Health Institute, Ministry of Health of Peru, Lima, Peru, 3 DIRESA Amazonas.



Sergio E. Recuenco Centro Nacional de Salud Publica-INS Capac Yupanqui 1400, Jesus Maria Lima 11, Peru

Phone: 511-748-1111 Ext: 2115 E-mail: srecuenco@gmail.com

### **SUMMARY**

- · Vampire bat rabies is enzootic in the Peruvian Amazon River Basin. Hematophagous bat bites to humans are everyday events among populations in the Amazon Basin.
- · Condorcanqui Province, at Amazonas Department in Peru, was the source of most of the sylvatic rabies cases in the Americas from 2007
- Amazonian indigenous populations are at high risk for the disease because their lifestyle and limited access to post exposure rabies
- . In 2011, Peru implemented the Plan of Massive Rabies Pre-Exposure Prophylaxis (Pre-EP) for high rabies risk communities in the Amazon region, the Plan considered the application of cell-culture vaccines to all population in the provinces of Condorcangui and Bagua.
- By 2012, human rabies cases in Amazonas Department, dropped from approximately 20 children annually to only 2 adults, those two cases had refused to get Pre-EP during the vaccination campaign at the end of 2011.
- From this experience 3 more regions of Peru joined the Plan, resulting in 90.877 persons immunized in the Peruvian Amazonian region to
- . In 2015, a human rabies outbreak in a different part of the Peruvian Amazon basin was responded with a massive rabies post exposure prophylaxis for the affected towns and Pre-EP for the neighboring ones
- · While no other intervention tools, are available for rabies control in hematophagous bats, and bat bites continue as a common event in high risk areas for sylvatic rabies, massive rabies prophylaxis appears as the solely effective intervention to prevent rabies deaths.

## BACKGROUND



|                       |                    |        | 100   | 9                        |       |
|-----------------------|--------------------|--------|-------|--------------------------|-------|
| REGIONES<br>AFECTADAS | ESPECIE RE<br>HUMA |        |       |                          |       |
|                       | MURCIÉLAGO         | CHOSNA | BURRO | BOVINO<br>(contacto<br>) | TOTAL |
| AMAZONAS              | 160                |        |       |                          | 160   |
| PASCO                 | 5                  |        |       |                          | 5     |
| SAN MARTIN            | 3                  |        |       |                          | 3     |
| LORETO                | 21                 |        |       |                          | 21    |
| MADRE DE DIOS         | 46                 | - 1    |       |                          | 47    |
| CUSCO                 | 17                 |        |       |                          | 17    |
| HUANUCO               |                    |        |       | - 1                      | 1     |
| APURIMAC              | 7                  |        | 1     |                          | - 8   |
| AYACUCHO              | 29                 |        |       |                          | 29    |
| JUNIN                 | 5                  |        |       |                          | - 5   |
| PUNO                  | 19                 |        |       |                          | 19    |
| CAJAMARCA             | 1                  |        |       | $\overline{}$            | 1     |
| TOTAL                 | 313                |        | - 1   | - 1                      | 316   |

Geographical distribution of human rabies in Per







- Persistence of human rabies outbreaks due to vampire bat transmission through bites in the Amazonas department was evident since 1975
- · Traditional outbreak response used nervous tissue vaccine for people regarded bitten. Never covered >20% of populations, leaving 80% of them susceptible.



## **Pre-EP INTERVENTION**

- In 2011, a MoH decision to intervene susceptible population in Amazonas lead to the Massive Rabies PreEP Plan, targeting all population in the Condocangui and Bagua provinces initially, and later extended to other risk areas.
- · The plan was justified by persistent human rabies outbreaks in children, and vampire bat bites statistics from MoH and collaborative research with the CDC, that documented high rates of exposures among all population, characterizing the Peruvian Amazon Basin as a very high risk area for sylvatic rabies.
- A MoH decree was issued, a vaccine donation of HDVC Rabies vaccine was accepted, and funds for obtaining PVCV were authorized.
- · As a coincidence Peru MoH started a decentralization process, giving autonomy to Regional Health Offices.

# **Evidence that justifies intervention**

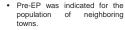
| REGIÓN     | 2009 | 2010 | 2011 | 2012 | 2013 | TOTAL | %    |
|------------|------|------|------|------|------|-------|------|
| AMAZONAS   | 1576 | 5714 | 2145 | 1733 | 833  | 12001 | 59.2 |
| TUSCO      | 50   | 169  | 36   | 441  | 20   | 716   | 3.5  |
| OTERO.     | 1122 | 856  | 1458 | 1380 | 590  | 5406  | 26.7 |
| UNIN       | 119  | 415  | 179  | 142  | 29   | 884   | 4.4  |
| RESTO PAÍS | 465  | 224  | 295  | 229  | 41   | 1254  | 6.2  |
| TOTAL      | 3332 | 7378 | 4113 | 3925 | 1513 | 20261 | 100  |





| Ma                                             | assiv   | e Pi    | reEl    | PA      | ctivi   | ity    |  |
|------------------------------------------------|---------|---------|---------|---------|---------|--------|--|
| RESULTADOS VACUNACIÓN PRE-EXPOSICIÓN 2011-2013 |         |         |         |         |         |        |  |
| REGION                                         | POB. A  | 2011    | 2012    | 2013    | POB VAC | COB    |  |
| REGIUN                                         | ATENDER | POB VAC | POB VAC | POB WAC | ACUMULA | ANUAL  |  |
| AMAZONAS                                       | 82503   | 15357   | 19166   | 20169   | 54692   | 66.29  |  |
| JUNIN                                          | 1800    |         | 2580    | 2505    | 5085    | 282.50 |  |
| CUSCO                                          | 15046   |         |         | 9645    | 9645    | 64.10  |  |
| LORETO                                         | 21886   |         |         | 4760    | 4760    | 21.75  |  |
| TOTAL                                          | 121235  | 15357   | 21746   | 37079   | 74182   | 61.19  |  |
| Fuente: ESNE/DI                                | RESAS   |         |         |         |         |        |  |

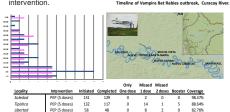



- Success of the intervention was observed in 2012, when only 2 human cases were reported in Condorcanqui, both were adults that refused PEP
- Evidence indicated rabies circulation and bite exposures persisted but no cases were observed among the population that
- The Pre-EP intervention was extended in 2013 to three more Departments with high sylvatic risk areas.
- The current intervention does not cover yet all Peruvian Amazon Basin, because some departments with not previously reported rabies outbreaks don't feel it is necessary to join the Plan.
- Current rabies epidemiology, with new rabies areas and increased colonization of the tropical forest justifies continuation and expansion of the intervention.

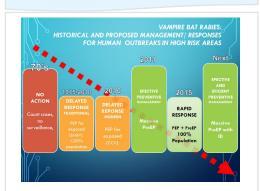
|                                   | Departamento | Provincia         | Distrito     | 2010 | 2011 | 2012 | 2013 |
|-----------------------------------|--------------|-------------------|--------------|------|------|------|------|
| New area                          | Amazonas     | Bagua             | Imaza        | -    | (20) | -    | 1    |
|                                   |              | Condorcanqui      | El Cenepa    | 2    |      | ~    | -    |
|                                   |              |                   | Nieva        | 10   | JE ! | (2)  | -    |
|                                   |              |                   | Rio Santiago | - 1  | δ.   | ~    | -    |
|                                   | Apurimac     |                   | Abancay      | 1    |      |      | -    |
|                                   | Ayacucho     | La Mar            | Chungui      | -    |      | -    | 1    |
|                                   | Cejamerce    | Chota             | Chimban      |      |      |      | 1    |
| New area                          | Cusco        | La Convención     | Echarate     | -    | -    | 7    | -    |
|                                   |              | La Convencion     | Pichari      |      | -    | - 1  | i .  |
| LAGRA WARREN                      | Loreto       | Datem del Marañón | Andoas       | KAP  | -    | -    | (2)  |
| Total de casos de rabia silvestre |              |                   |              | 14   | 20   | 10   | 5    |
|                                   |              |                   |              |      |      |      |      |

Sylvatic rabies risk areas in Peru and its expansion in recent years.

#### PEP OUTBREAK RESPONSE


- In May 2015, a human rables outbreak in Loreto, was reported in an location with not previous rabies reports at the Curacay River, Only 3 human deaths occurred.
- · Presentation and setting was a typical vampire bat rabies outbreaks as observed in other areas of the Amazon Basin.
- Rabies PEP was administered to all population in the locations that reported human rabies deaths.




· PVCV was used. RIG was not available at the time of







#### CONCLUSIONS



- ✓ Massive rabies prophylaxis is the only effective tool available to prevent human deaths due to sylvatic rabies transmitted by hematophagous bats among the Amazon Basin human populations.
- ✓ The massive rabies prophylaxis strategy can be useful for populations other than the Amazon Basin, with similar barriers to access rabies biologics and are continuously exposed to rabies.

Acknowledgements: Ricardo Lopez, Albina Diaz, and Victor Fiestas (INS), also Cristian Carey, and Percy Angeles (DIRESA Loreto)